Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

The Hedgehog and Wnt signalling pathways in cancer

Abstract

The Wnt and Hedgehog (Hh) signalling pathways have long been known to direct growth and patterning during embryonic development. Recent evidence also implicates these pathways in the postembryonic regulation of stem-cell number in epithelia such as those of the skin and intestine, which undergo constant renewal. A pathological role for the Wnt and Hh pathways has emerged from studies showing a high frequency of specific human cancers associated with mutations that constitutively activate the transcriptional response of these pathways. This article focuses on Hh and Wnt signal transduction and reviews evidence suggesting that tumorigenesis associated with pathway activation may result from mis-specification of cells towards stem-cell or stem cell-like fates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development and growth control.
Figure 2: General characteristics and components of the Hh and Wnt signalling pathways.
Figure 3: A model for tumorigenesis.

Similar content being viewed by others

References

  1. Wodarz, A. & Nusse, R. Mechanisms of Wnt signaling in development. Annu. Rev. Cell. Dev. Biol. 14, 59–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Polakis, P. Wnt Signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  3. Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. Cell 103, 311–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Ingham, P. W. Transducing hedgehog: the story so far. EMBO J. 17, 3505–3511 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goodrich, L. V. & Scott, M. P. Hedgehog and patched in neural development and disease. Neuron 21, 1243–1257 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Muenke, M. & Beachy, P. A. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C., Beaudet, A., Sly, W. & Valle, D.) 6203–6230 (McGraw-Hill, New York, 2001).

    Google Scholar 

  7. McMahon, A. P. More surprises in the hedgehog signaling pathway. Cell 100, 185–188 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, J. J., von Kessler, D. P., Parks, S. & Beachy, P. A. Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 71, 33–50 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Kalderon, D. Transducing the Hedgehog signal. Cell 103, 371–374 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Porter, J. A., Young, K. E. & Beachy, P. A. Cholesterol modification of Hedgehog signaling proteins in animal development. Science 274, 255–259 (1996).

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Pepinsky, R. B. et al. Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biol. Chem. 273, 14037–14045 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Baeg, G.-H. & Perrimon, N. Functional binding of secreted molecules to heparan sulfate proteoglycans in Drosophila. Curr. Opin. Cell Biol. 12, 575–580 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Burke, R. et al. Dispatched, a novel sterol sensing domain protein dedicated to the release of cholesterol-modified Hedgehog from signaling cells. Cell 99, 803–815 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Davies, J. P., Chen, F. W. & Ioannou, Y. A. Transmembrane molecular pump activity of Niemann-Pick C1 protein. Science 290, 2295–2298 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Stone, D. M. et al. The tumor-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384, 129–134 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Denef, N., Neubuser, D., Perez, L. & Cohen, S. M. Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 102, 521–531 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000).

    Article  CAS  ADS  PubMed  Google Scholar 

  18. Aza-Blanc, P., Remírez-Weber, F.-A., Laget, M.-P., Schwartz, C. & Kornberg, T. B. Proteolysis that is inhibited by Hedgehog targets cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 1043–1053 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Robbins, D. J. et al. Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein Costal2. Cell 90, 225–234 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, C. H. et al. Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell 98, 305–16 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Freeman, M. Feedback control of intercellular signalling in development. Nature 408, 313–319 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Park, H. L. et al. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 127, 1593–1605 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Hobmayer, B. et al. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407, 186–189 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J. & Skarnes, W. C. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407, 535–538 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Bhanot, P. et al. A new member of the Frizzled family from Drosophila functions as a Wingless receptor. Nature 282, 225–230 (1996).

    Article  ADS  Google Scholar 

  26. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  CAS  ADS  PubMed  Google Scholar 

  27. Nusse, R. & Varmus, H. E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109 (1982).

    Article  CAS  PubMed  Google Scholar 

  28. Morin, P. J. et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Lickert, H. et al. Wnt/β-catenin signaling regulates the expression of the homeobox gene Cdx1 in embryonic intestine. Development 127, 3805–3813 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. He, T.-C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Shih, I.-M., Yu, J., He, T.-C., Vogelstein, B. & Kinzler, K. W. The β-catenin binding domain of adenomatous polyposis coli is sufficient for tumor suppression. Cancer Res. 60, 1671–1676 (2000).

    CAS  PubMed  Google Scholar 

  32. Johnson, R. L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668–1671 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–851 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90–92 (1998).

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Lam, C.-W. et al. A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene 18, 833–836 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Nilsson, M. et al. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing Gli-1. Proc. Natl Acad. Sci. USA 97, 3438–3443 (2000).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Bray, S. A Notch affair. Cell 93, 499–503 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Massagué, J., Blain, S. W. & Lo, R. S. TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103, 295–309 (2000).

    Article  PubMed  Google Scholar 

  39. Taipale, J., Saharinen, J. & Keski-Oja, J. Extracellular matrix-associated transforming growth factor-β: activation and roles in cancer cell growth and invasion. Adv. Cancer Res. 75, 87–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Brash, D. E. & Pontén, J. Skin precancer. Cancer Surv. 32, 69–113 (1998).

    CAS  PubMed  Google Scholar 

  42. Jonason, A. S. et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc. Natl Acad. Sci. USA 93, 14025–14029 (1996).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Xie, T. & Spradling, A. C. A Niche maintaining germ line stem cells in the Drosophila ovary. Science 290, 328–330 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Zhang, Y. & Kalderon, D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 410, 599–604 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Fuchs, E. & Segre, J. A. Stem cells: a new lease on life. Cell 100, 143–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Booth, C. & Potten, C. Gut instincts: thoughts on intestinal epithelial stem cells. J. Clin. Invest. 105, 1493–1499 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Campbell, F. et al. Post-irradiation somatic mutation and clonal stabilisation time in the human colon. Gut 39, 569–573 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet. 19, 379–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Moser, A. R., Dove, W. F., Roth, K. A. & Gordon, J. I. The Min (multiple intestinal neoplasia) mutation: its effects on gut epithelial cell differentiation and interaction with a modifier system. J. Cell Biol. 116, 1517–1526 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Alder, J., Cho, N. K. & Hatten, M. E. Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron 17, 389–399 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Wechsler-Reya, R. J. & Scott, M. P. The developmental biology of brain tumors. Annu. Rev. Neurosci. 24, 385–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Kenney, A. M. & Rowitch, D. H. Sonic hedgehog promotes G1 cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol. Cell. Biol. 20, 9055–9067 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miyazawa, K. et al. A Role for p27/Kip1 in the control of cerebellar granule cell precursor proliferation. J. Neurosci. 20, 5756–5763 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pietsch, T. et al. Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res. 57, 2085–2088 (1997).

    CAS  PubMed  Google Scholar 

  57. Marino, S., Vooijs, M., van der Gulden, H., Jonkers, J. & Berns, A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer of the cerebellum. Genes Dev. 14, 994–1004 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Schiffer, D. et al. Cell-cycle inhibitor p27/Kip-1 expression in non-astrocytic and non-oligodendrocytic human nervous system tumors. Neurosci. Lett. 264, 29–32 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Krüger, K., Blume-Peytavi, U. & Orfanos, C. E. Basal cell carcinoma possibly originates from the outer root sheath and/or the bulge region of the vellus hair follicle. Arch. Dermatol. Res. 291, 253–259 (1999).

    Article  PubMed  Google Scholar 

  60. St-Jacques, B. et al. Sonic hedgehog signaling is essential for hair development. Curr. Biol. 8, 1058–1068 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Sato, N., Leopold, L. P. & Crystal, R. G. Induction of the hair growth phase in postnatal mice by localized transient expression of Sonic hedgehog. J. Clin. Invest. 104, 855–864 (2000).

    Article  Google Scholar 

  62. Gibbs, J. B. Mechanism-based target identification and drug discovery in cancer research. Science 287, 1969–1973 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  63. Hahn, W. C. et al. Creation of human tumor cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  PubMed  ADS  Google Scholar 

  64. Elenbaas, B. et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Conlon, I. & Raff, M. Size control in animal development. Cell 96, 235 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Counter, C. M. et al. Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc. Natl Acad. Sci. USA 95, 14723–14728 (1998).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  67. Tsao, J.-L. et al. Tracing cell fates in human colorectal tumors from somatic microsatellite mutations: evidence for adenomas with stem cell architecture. Am. J. Pathol. 153, 1189–1200 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tejpar, S. et al. Predominance of β-catenin mutations and β-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor). Oncogene 18, 6615–6620 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Wei, Y. et al. Activation of β-catenin in epithelial and mesenchymal hepatoblastomas. Oncogene 19, 498–504 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Sparks, A. B., Morin, P. J., Vogelstein, B. & Kinzler, K. W. Mutational analysis of the APC/β-catenin/Tcf pathway in colorectal cancer. Cancer Res. 58, 1130–1134 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to the authors of original work not cited. Due to editorial limits on references, we were largely limited to citing review articles and more recent original articles that have not been reviewed previously. We thank D. M. Berman for critical review of the manuscript. P.A.B. is an investigator of the Howard Hughes Medical Institute. This work was supported by a grant from the NIH.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taipale, J., Beachy, P. The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349–354 (2001). https://doi.org/10.1038/35077219

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35077219

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing