Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New insights into the functions of the superior temporal cortex

Key Points

  • Damage to the right cerebral hemisphere can elicit spatial neglect — a lack of awareness of space and of object parts on the side contralateral to a brain injury. Traditionally, the inferior parietal lobule and the temporo–parieto–occipital junction have been believed to be as the neural substrates responsible for this defect.

  • New anatomical data obtained in a large group of patients who had only spatial neglect, without any further visual field defects, showed that, contrary to this belief, the superior temporal cortex seems to be the typical location in the human brain in which lesions cause spatial neglect.

  • Lesion of some subcortical structures, namely the putamen, caudate nucleus and thalamic pulvinar, can also cause spatial neglect. As these structures are extensively connected to the superior temporal cortex, it can be argued that they form a coherent cortico–subcortical network for representing spatial awareness.

  • What is the role of the intact superior temporal cortex? It has been proposed that the superior temporal cortex is a site of integration for both egocentric and object-centred reference systems. In other words, it might allow the represention of visual input in two simultaneous modes: in veridical egocentric coordinates and in normalized, within-object co-ordinates. In addition, the superior temporal cortex is involved in processing species-specific vocalizations.

  • It is conceivable that, in the course of evolution, the originally bilateral functions of the superior temporal cortex have been segregated in the human brain between the left hemisphere, which subserves language, and the right hemisphere, which mediates spatial awareness and exploration.

Abstract

One of the mysteries of the brain is the role of superior temporal cortex. Recent data have shed new light on the function of this area, supporting the idea that the rostral part of the superior temporal cortex acts as an interface between the dorsal and ventral streams of visual input processing to allow the exploration of both object-related and space-related information. The superior temporal cortex is also involved in processing species-specific vocalizations. It seems that, during evolution, the formerly bilateral functions of the superior temporal cortex have been segregated in the human brain between the left hemisphere, which subserves language, and the right hemisphere, which mediates spatial awareness and exploration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organization of superior temporal and parietal cortex.
Figure 2: Scan paths during visual and tactile exploration of the surroundings.
Figure 3: The cortico–subcortical network that underlies spatial neglect.

Similar content being viewed by others

References

  1. Luh, K. E., Butter, C. M. & Buchtel, H. A. Impairments in orienting to visual stimuli in monkeys following unilateral lesions of the superior sulcal polysensory cortex. Neuropsychologia 24, 461–470 (1986).

    Article  CAS  Google Scholar 

  2. Watson, R. T., Valenstein, E., Day, A. & Heilman, K. M. Posterior neocortical systems subserving awareness and neglect. Neglect associated with superior temporal sulcus but not area 7 lesions. Arch. Neurol. 51, 1014–1021 (1994).

    Article  CAS  Google Scholar 

  3. Karnath, H.-O., Ferber, S. & Himmelbach, M. Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411, 950–953 (2001).

    Article  CAS  Google Scholar 

  4. Karnath, H.-O., Niemeier, M. & Dichgans, J. Space exploration in neglect. Brain 121, 2357–2367 (1998).

    Article  Google Scholar 

  5. Karnath, H.-O. & Perenin, M.-T. Tactile exploration of peripersonal space in patients with neglect. Neuroreport 9, 2273–2277 (1998).

    Article  CAS  Google Scholar 

  6. Heilman, K. M., Watson, R. T., Valenstein, E. & Damasio, A. R. in Localization in Neuropsychology (ed. Kertesz, A.) 471–492 (Academic Press, New York, 1983).

    Google Scholar 

  7. Vallar, G. & Perani, D. The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man. Neuropsychologia 24, 609–622 (1986).

    Article  CAS  Google Scholar 

  8. Perenin, M. T. in Parietal Lobe Contributions to Orientation in 3D Space (eds Thier, P. & Karnath, H.-O.) 289–308 (Springer, Heidelberg, 1997).

    Book  Google Scholar 

  9. Samuelsson, H., Jensen, C., Ekholm, S., Naver, H. & Blomstrand, C. Anatomical and neurological correlates of acute and chronic visuospatial neglect following right hemisphere stroke. Cortex 33, 271–285 (1997).

    Article  CAS  Google Scholar 

  10. Leibovitch, F. S. et al. Brain–behavior correlations in hemispatial neglect using CT and SPECT. The Sunnybrook Stroke Study. Neurology 50, 901–908 (1998).

    Article  CAS  Google Scholar 

  11. Leibovitch, F. S. et al. Brain SPECT imaging and left hemispatial neglect covaried using partial least squares: the Sunnybrook Stroke Study. Hum. Brain Mapp. 7, 244–253 (1999).

    Article  CAS  Google Scholar 

  12. Husain, M. & Kennard, C. Visual neglect associated with frontal lobe infarction. J. Neurol. 243, 652–657 (1996).

    Article  CAS  Google Scholar 

  13. Heilman, K. M. & Valenstein, E. Auditory neglect in man. Arch. Neurol. 26, 32–35 (1972).

    Article  CAS  Google Scholar 

  14. Klatka, L. A., Depper, M. H. & Marini, A. M. Infarction in the territory of the anterior cerebral artery. Neurology 51, 620–622 (1998).

    Article  CAS  Google Scholar 

  15. Milner, A. D. in Neurophysiological and Neuropsychological Aspects of Spatial Neglect (ed. Jeannerod, M.) 259–288 (Elsevier, North-Holland, 1987).

    Book  Google Scholar 

  16. Wardak, C., Olivier, E. & Duhamel, J.-R. in The Cognitive and Neural Bases of Spatial Neglect (eds Karnath, H.-O., Milner, A. D & Vallar, G.) (Oxford Univ. Press, Oxford, in the press).

  17. Roland, P. E. The posterior parietal association cortex in man. Behav. Brain Sci. 3, 513–514 (1980).

    Article  Google Scholar 

  18. Jones, E. G. & Powell, T. P. S. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93, 793–820 (1970).

    Article  CAS  Google Scholar 

  19. Milner, A. D. & Goodale, M. A. The Visual Brain in Action (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  20. Karnath, H.-O., Himmelbach, M. & Rorden, C. The subcortical anatomy of human spatial awareness. Behav. Pharmacol. (in the press).

  21. Petersen, S. E., Robinson, D. L. & Morris, J. D. Contributions of the pulvinar to visual spatial attention. Neuropsychologia 25, 97–105 (1987).

    Article  CAS  Google Scholar 

  22. Yeterian, E. H. & Pandya, D. N. Corticostriatal connections of the superior temporal region in rhesus monkeys. J. Comp. Neurol. 399, 384–402 (1998).

    Article  CAS  Google Scholar 

  23. Jones, E. G. The Thalamus (Plenum, New York, 1985).

    Book  Google Scholar 

  24. Burton, H. & Jones, E. G. The posterior thalamic region and its cortical projection in New World and Old World monkeys. J. Comp. Neurol. 168, 249–301 (1976).

    Article  CAS  Google Scholar 

  25. Eidelberg, D. & Galaburda, A. M. Symmetry and asymmetry in the human posterior thalamus. I. Cytoarchitectonic analysis in normal persons. Arch. Neurol. 39, 325–332 (1982).

    Article  CAS  Google Scholar 

  26. Chakraborty, S. & Thier, P. A distributed neuronal substrate of perceptual stability during smooth-pursuit eye movements in the monkey. Soc. Neurosci. Abstr. 26, 674 (2000).

    Google Scholar 

  27. Grüsser, O.-J., Pause, M. & Schreiter, U. Localization and responses of neurons in the parieto-insular cortex of awake monkeys (Macaca fascicularis). J. Physiol. (Lond.) 430, 537–557 (1990).

    Article  Google Scholar 

  28. Grüsser, O.-J., Pause, M. & Schreiter, U. Vestibular neurons in the parieto-insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. J. Physiol. (Lond.) 430, 559–583 (1990).

    Article  Google Scholar 

  29. Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (eds Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).

    Google Scholar 

  30. Ungerleider, L. G. & Haxby, J. V. 'What' and 'where' in the human brain. Curr. Opin. Neurobiol. 4, 157–165 (1994).

    Article  CAS  Google Scholar 

  31. Bruce, C., Desimone, R. & Gross, C. G. Visual properties of neurons in a polysensory area in superior temporal sulcus of the maquaque. J. Neurophysiol. 46, 369–384 (1981).

    Article  CAS  Google Scholar 

  32. Seltzer, B. & Pandya, D. N. Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res. 149, 1–24 (1978).

    Article  CAS  Google Scholar 

  33. Seltzer, B. & Pandya, D. N. Parietal, temporal and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: a retrograde tracer study. J. Comp. Neurol. 343, 445–463 (1994).

    Article  CAS  Google Scholar 

  34. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  Google Scholar 

  35. Morel, A. & Bullier, J. Anatomical segregation of two cortical visual pathways in the macaque monkey. Vis. Neurosci. 4, 555–578 (1990).

    Article  CAS  Google Scholar 

  36. Baizer, J. S., Ungerleider, L. G. & Desimone, R. Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J. Neurosci. 11, 168–190 (1991).

    Article  CAS  Google Scholar 

  37. Desimone, R. & Gross, C. G. Visual areas in the temporal cortex of the macaque. Brain Res. 178, 363–380 (1979).

    Article  CAS  Google Scholar 

  38. Ó Scalaidhe, S. P., Albright, T. D., Rodman, H. R. & Gross, C. G. Effects of superior temporal polysensory area lesions on eye movements in the macaque monkey. J. Neurophysiol. 73, 1–19 (1995).The first study to investigate the behavioural effects of lesions confined to the STP in monkeys. Saccade latency was found to be increased for orienting to contralesional targets, whereas responses towards ipsilesional targets were unaffected.

    Article  Google Scholar 

  39. Perrett, D. I. et al. Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc. R. Soc. Lond. B 223, 293–317 (1985).

    Article  CAS  Google Scholar 

  40. Perrett, D. I. et al. Viewer-centred and object-centred coding of heads in the macaque temporal cortex. Exp. Brain Res. 86, 159–173 (1991).

    Article  CAS  Google Scholar 

  41. Baylis, G. C., Rolls, E. T. & Leonard, C. M. Functional subdivisions of the temporal lobe neocortex. J. Neurosci. 7, 330–342 (1987).

    Article  CAS  Google Scholar 

  42. Campbell, R., Heywood, C. A., Cowey, A., Regard, M. & Landis, T. Sensitivity to eye gaze in prosopagnosic patients and monkeys with superior temporal sulcus ablation. Neuropsychologia 28, 1123–1142 (1990).

    Article  CAS  Google Scholar 

  43. Eacott, M. J., Heywood, C. A., Gross, C. G. & Cowey, A. Visual discrimination impairments following lesions of the superior temporal sulcus are not specific for facial stimuli. Neuropsychologia 31, 609–619 (1993).

    Article  CAS  Google Scholar 

  44. Perrett, D. I., Oram, M. W., Hietanen, J. K. & Benson, P. J. in The Neuropsychology of High-Level Vision (eds Farah, M. J. & Ratcliff, G.) 33–61 (Lawrence Erlbaum, Hillsdale, New Jersey, 1994).

    Google Scholar 

  45. Young, M. P. Objective analysis of the topological organization of the primate cortical visual system. Nature 358, 152–155 (1992).

    Article  CAS  Google Scholar 

  46. Oram, M. W. & Perrett, D. I. Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. J. Neurophysiol. 76, 109–129 (1996).Functional evidence is reported that information from the dorsal and ventral systems converge in the superior temporal polysensory area at the single-unit level, providing a conjoint representation of object identity and direction of motion.

    Article  CAS  Google Scholar 

  47. Vaina, L. M., Cowey, A., Eskew, R. T. Jr, LeMay, M. & Kemper, T. Regional cerebral correlates of global motion perception: evidence from unilateral cerebral brain damage. Brain 124, 310–321 (2001).

    Article  CAS  Google Scholar 

  48. Farah, M. J. & Buxbaum, L. J. in Parietal Lobe Contributions to Orientation in 3D Space (eds Thier, P. & Karnath, H.-O.) 385–400 (Springer, Heidelberg, 1997).

    Book  Google Scholar 

  49. Driver, J. in The Hippocampal and Parietal Foundations of Spatial Cognition (eds Burgess, N., Jeffery, K. J. & O'Keefe, J.) 67–89 (Oxford Univ. Press, Oxford, 1999).A review and analysis of 'object-centred' and egocentric effects in patients with spatial neglect. It is suggested that the pathological egocentric bias produced by the lesion that leads to neglect can be superimposed on relatively preserved visual object-segmentation processes.

    Google Scholar 

  50. Niemeier, M. & Karnath, H.-O. in The Cognitive and Neural Bases of Spatial Neglect (eds Karnath, H.-O., Milner, A. D. & Vallar, G.) (Oxford Univ. Press, Oxford, in the press).

  51. Mesulam, M.-M. in Principles of Behavioral Neurology (ed. Mesulam, M.-M.) 125–168 (F. A. Davis Co., Philadelphia, 1985).

    Google Scholar 

  52. Binder, J. The new neuroanatomy of speech perception. Brain 123, 2371–2372 (2000).

    Article  Google Scholar 

  53. Wise, R. J. S. et al. Separate neural subsystems within 'Wernicke's area'. Brain 124, 83–95 (2001).

    Article  CAS  Google Scholar 

  54. Boatman, D., Lesser, R. P. & Gordon, B. Auditory speech processing in the left temporal lobe: an electrical interference study. Brain Lang. 51, 269–290 (1995).

    Article  CAS  Google Scholar 

  55. Kreisler, A. et al. The anatomy of aphasia revisited. Neurology 54, 1117–1123 (2000).

    Article  CAS  Google Scholar 

  56. Kaas, J. H. & Hackett, T. A. Subdivisions of auditory cortex and processing streams in primates. Proc. Natl Acad. Sci. USA 97, 11793–11799 (2000).

    Article  CAS  Google Scholar 

  57. Rauschecker, J. P., Tian, B. & Hauser, M. Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268, 111–114 (1995).Single-unit recordings in the superior temporal gyrus of the rhesus monkey revealed neurons showing preferences for vocalizations from the monkeys' own repertoire (species-specific communication calls).

    Article  CAS  Google Scholar 

  58. Tian, B., Reser, D., Durham, A., Kustov, A. & Rauschecker, J. P. Functional specialization in rhesus monkey auditory cortex. Science 292, 290–293 (2001).

    Article  CAS  Google Scholar 

  59. Hackett, T. A., Stepniewska, I. & Kaas, J. H. Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Res. 817, 45–58 (1999).

    Article  CAS  Google Scholar 

  60. Romanski, L. M., Bates, J. F. & Goldman-Rakic, P. S. Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 403, 141–157 (1999).

    Article  CAS  Google Scholar 

  61. Rauschecker, J. P. & Tian, B. Mechanisms and streams for processing of 'what' and 'where' in auditory cortex. Proc. Natl Acad. Sci. USA 97, 11800–11806 (2000).

    Article  CAS  Google Scholar 

  62. Darling, W. G., Rizzo, M. & Butler, A. J. Disordered sensorimotor transformations for reaching following posterior cortical lesions. Neuropsychologia 39, 237–254 (2001).The study shows that lesions of right and of left inferior parietal lobe with and without neglect can impair patients' reaching movements with both hands to remembered visual targets.

    Article  CAS  Google Scholar 

  63. Lacquaniti, F. et al. Visuomotor transformations for reaching to memorized targets: a PET study. Neuroimage 5, 129–146 (1997).

    Article  CAS  Google Scholar 

  64. Milner, A. D., Paulignan, Y., Dijkerman, H. C., Michel, F. & Jeannerod, M. A paradoxical improvement of misreaching in optic ataxia: new evidence for two separate neural systems for visual localization. Proc. R. Soc. Lond. B 266, 2225–2229 (1999).The study elegantly dissociates different visuomotor defects in a patient with Bálint's syndrome, supporting the idea of two systems for spatial representation in the brain, one for immediate guidance of actions, the other for longer-term coding of spatial relationships.

    Article  CAS  Google Scholar 

  65. Milner, A. D. & Dijkerman, H. C. in Comparative Neuropsychology (ed. Milner, A. D.) 70–94 (Oxford University Press, Oxford, 1998).

    Google Scholar 

  66. Rafal, R. in Handbook of Neuropsychology 2nd edn, Vol. 4 (ed. Behrmann, M.) 121–141 (Elsevier, Amsterdam, 2001).

    Google Scholar 

  67. Rubens, A. B. Caloric stimulation and unilateral visual neglect. Neurology 35, 1019–1024 (1985).

    Article  CAS  Google Scholar 

  68. Pizzamiglio, L., Frasca, R., Guariglia, C., Incoccia, C. & Antonucci, G. Effect of optokinetic stimulation in patients with visual neglect. Cortex 26, 535–540 (1990).

    Article  CAS  Google Scholar 

  69. Karnath, H.-O., Christ, K. & Hartje, W. Decrease of contralateral neglect by neck muscle vibration and spatial orientation of trunk midline. Brain 116, 383–396 (1993).

    Article  Google Scholar 

  70. McCulloch, W. S. The functional organization of the cerebral cortex. Physiol. Rev. 24, 390–407 (1944).

    Article  Google Scholar 

  71. Denny-Brown, D. & Chambers, R. A. The parietal lobes and behavior. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 36, 35–117 (1958).

    CAS  PubMed  Google Scholar 

  72. Ettlinger, G. & Kalsbeck, J. E. Changes in tactile discrimination and in visual reaching after successive and simultaneous bilateral posterior parietal ablations in the monkey. J. Neurol. Neurosurg. Psychiatry 25, 256–268 (1962).

    Article  CAS  Google Scholar 

  73. Lamotte, R. H. & Acuna, C. Deficits in accuracy of reaching after removal of posterior parietal cortex in monkeys. Brain Res. 139, 309–326 (1978).

    Article  CAS  Google Scholar 

  74. Faugier-Grimaud, S., Frenois, C. & Stein, D. G. Effects of posterior parietal lesions on visually guided behavior in monkeys. Neuropsychologia 16, 151–168 (1978).

    Article  CAS  Google Scholar 

  75. Stein, J. in Active touch (ed. Gordon, G.) 79–90 (Pergamon, Oxford, 1978).An elegant study comparing the effects of reversible inactivation of the inferior and superior parietal lobules in the same monkeys using a technique that allowed separate cooling of areas 5 versus 7.

    Google Scholar 

  76. Jakobson, L. S., Archibald, Y. M., Carey, D. P. & Goodale, M. A. A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. Neuropsychologia 29, 803–808 (1991).

    Article  CAS  Google Scholar 

  77. Mattingley, J. B., Husain, M., Rorden, C., Kennard, C. & Driver, J. Motor role of human inferior parietal lobe revealed in unilateral neglect patients. Nature 392, 179–182 (1998).

    Article  CAS  Google Scholar 

  78. Karnath, H.-O., Dick, H. & Konczak, J. Kinematics of goal-directed arm movements in neglect: control of hand in space. Neuropsychologia 35, 435–444 (1997).

    Article  CAS  Google Scholar 

  79. Jackson, S. R., Newport, R., Husain, M., Harvey, M. & Hindle, J. V. Reaching movements may reveal the distorted topography of spatial representations after neglect. Neuropsychologia 38, 500–507 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft and the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie. I thank P. Thier for helpful suggestions about the manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

MIT ENCYCLOPEDIA OF COGNITIVE SCIENCES

Hemispheric specialization

Object recognition, animal studies

Object recognition, human neuropsychology

Spatial perception

Visual neglect

Visual processing streams

Glossary

SPATIAL NEGLECT

A lack of awareness of space and of object parts on the side contralateral to a brain injury.

SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY

A method in which images are generated by using radionuclides that emit single photons of a given energy. Images are captured at multiple positions by rotating the sensor around the subject; the three-dimensional distribution of radionuclides is then used to reconstruct the images. SPECT can be used to observe biochemical and physiological processes, as well as the size and volume of structures. Unlike positron emission tomography, SPECT requires the physical alignment of the photons for their detection, resulting in the loss of many available photons and the degradation of the image.

COLLATERAL TRIGONE

The ventricular region where the body, the posterior horn and the inferior horn of the lateral ventricle come together.

PARAFALCINE REGIONS

Cortical regions located adjacent to the falx cerebri, a sickle-shaped fold of the dura mater that dips sagittally from the skull between the cerebral hemispheres.

LESION SUBTRACTION TECHNIQUE

A means of identifying brain regions that are responsible for the expression of a particular pathological behaviour. The distribution of brain damage in patients who show the behaviour of interest is compared with that in patients who also have lesions, but who do not express this behaviour. Differences in the extent of damage provide clues about the neural substrates that underlie the behavioural abnormality.

RECEPTIVE FIELD

The area of the sensory space in which stimulus presentation leads to the response of a particular sensory neuron.

SACCADE

A rapid eye movement that brings the point of maximal visual acuity — the fovea — to the image of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karnath, HO. New insights into the functions of the superior temporal cortex. Nat Rev Neurosci 2, 568–576 (2001). https://doi.org/10.1038/35086057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35086057

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing