Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Innate antimicrobial peptide protects the skin from invasive bacterial infection

Abstract

In mammals, several gene families encode peptides with antibacterial activity, such as the β-defensins and cathelicidins1,2,3. These peptides are expressed on epithelial surfaces and in neutrophils, and have been proposed to provide a first line of defence against infection by acting as ‘natural antibiotics’4,5. The protective effect of antimicrobial peptides is brought into question by observations that several of these peptides are easily inactivated6,7,8 and have diverse cellular effects that are distinct from antimicrobial activity demonstrated in vitro9,10,11,12,13. To investigate the function of a specific antimicrobial peptide in a mouse model of cutaneous infection, we applied a combined mammalian and bacterial genetic approach to the cathelicidin antimicrobial gene family14. The mature human (LL-37)15 and mouse (CRAMP)16 peptides are encoded by similar genes (CAMP and Cnlp, respectively), and have similar α-helical structures, spectra of antimicrobial activity and tissue distribution. Here we show that cathelicidins are an important native component of innate host defence in mice and provide protection against necrotic skin infection caused by Group A Streptococcus (GAS).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disruption of the Cnlp gene encoding CRAMP in mice.
Figure 2: Cnlp-deletion renders mice susceptible to severe GAS infection.
Figure 3: GAS mutants resistant to CRAMP produce more severe infections in normal mice.
Figure 4: Cnlp-null mouse blood leukocytes are equivalent in relative number and oxidative burst capacity, but deficient in bacterial killing when compared to leukocytes derived from wild-type mice.

Similar content being viewed by others

References

  1. Scott, M. G. & Hancock, R. E. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit. Rev. Immunol. 20, 407–431 (2000).

    Article  CAS  Google Scholar 

  2. Boman, H. G. Innate immunity and the normal microflora. Immunol. Rev. 173, 5–16 (2000).

    Article  CAS  Google Scholar 

  3. Ganz, T. & Lehrer, R. Antibiotic peptides from higher eukaryotes: biology and applications. Mol. Med. Today 5, 292–297 (1999).

    Article  CAS  Google Scholar 

  4. Ganz, T. et al. Defensins: natural peptide antibiotics of human neutrophils. J. Clin. Invest. 76, 1427–1435 (1985).

    Article  CAS  Google Scholar 

  5. Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl Acad. Sci. USA 84, 5449–5453 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Goldman, M. J. et al. Human β-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88, 553–560 (1997).

    Article  CAS  Google Scholar 

  7. Wang, Y., Agerberth, B., Lothgren, A., Almstedt, A. & Johansson, J. Apolipoprotein A-I binds and inhibits the human antibacterial/cytotoxic peptide LL-37. J. Biol. Chem. 273, 33115–33118 (1998).

    Article  CAS  Google Scholar 

  8. Travis, S. M. et al. Bactericidal activity of mammalian cathelicidin-derived peptides. Infect. Immun. 68, 2748–2755 (2000).

    Article  CAS  Google Scholar 

  9. Gallo, R. L. et al. Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc. Natl Acad. Sci. USA 91, 11035–11039 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Shi, J., Ross, C., Leto, T. & Blecha, F. PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47phox. Proc. Natl Acad. Sci. USA 93, 6014–6018 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Lencer, W. et al. Induction of epithelial chloride secretion by channel-forming cryptdins 2 and 3. Proc. Natl Acad. Sci. USA 94, 8585–8589 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Risso, A., Zanetti, M. & Gennaro, R. Cytotoxicity and apoptosis mediated by two peptides of innate immunity. Cell. Immunol. 189, 107–115 (1998).

    Article  CAS  Google Scholar 

  13. Chertov, O. et al. Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J. Biol. Chem. 271, 2935–2940 (1996).

    Article  CAS  Google Scholar 

  14. Zanetti, M., Gennaro, R., Scocchi, M. & Skerlavaj, B. Structure and biology of cathelicidins. Adv. Exp. Med. Biol. 479, 203–218 (2000).

    Article  CAS  Google Scholar 

  15. Gudmundsson, G. H. et al. The human gene Fall39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur. J. Biochem. 238, 325–332 (1996).

    Article  CAS  Google Scholar 

  16. Gallo, R. L. et al. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J. Biol. Chem. 272, 13088–13093 (1997).

    Article  CAS  Google Scholar 

  17. Dorschner, R. A. et al. Cutaneous injury induces the release of cathelicidin antimicrobial peptides active against group A Streptococcus. J. Invest. Dermatol. 117, 91–97 (2001).

    Article  CAS  Google Scholar 

  18. Ferretti, J. J. et al. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl Acad. Sci. USA 98, 4658–4663 (2001).

    Article  ADS  CAS  Google Scholar 

  19. Peekhaus, N. & Conway, T. Positive and negative transcriptional regulation of the Escherichia coli gluconate regulon gene gntT by GntR and the cyclic AMP (cAMP)–cAMP receptor protein complex. J. Bacteriol. 180, 1777–1785 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Miller, S. I., Pulkkinen, W. S., Selsted, M. M. & Mekalanos, J. J. Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect. Immun. 58, 3706–3710 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Burtnick, M. N. & Woods, D. E. Isolation of polymyxin B-susceptible mutants of Burkholderia pseudomallei and molecular characterization of genetic loci involved in polymyxin B resistance. Antimicrob. Agents Chemother. 43, 2648–2656 (1999).

    Article  CAS  Google Scholar 

  22. Cole, A. M. et al. Inhibition of neutrophil elastase prevents cathelicidin activation and impairs clearance of bacteria from wounds. Blood 97, 297–304 (2001).

    Article  CAS  Google Scholar 

  23. Groisman, E. A., Parra-Lopez, C., Salcedo, M., Lipps, C. J. & Heffron, F. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc. Natl Acad. Sci. USA 89, 11939–11943 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Islam, D. et al. Downregulation of bactericidal peptides in enteric infections: A novel immune escape mechanism with bacterial DNA as a potential regulator. Nature Med. 7, 180–185 (2001).

    Article  CAS  Google Scholar 

  25. Bals, R., Weiner, D., Meegalla, R. & Wilson, J. Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J. Clin. Invest. 103, 1113–1117 (1999).

    Article  CAS  Google Scholar 

  26. De, Y. et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192, 1069–1074 (2000).

    Article  Google Scholar 

  27. Yang, D. et al. β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525–528 (1999).

    Article  CAS  Google Scholar 

  28. Nizet, V. et al. Genetic locus for streptolysin S production by group A streptococcus. Infect. Immun. 68, 4245–4254 (2000).

    Article  CAS  Google Scholar 

  29. Karlyshev, A. V., Pallen, M. J. & Wren, B. W. Single-primer PCR procedure for rapid identification of transposon insertion sites. Biotechniques 28, 1078–1082 (2000).

    Article  CAS  Google Scholar 

  30. Betschel, S., Borgia, S., Barg, N., Low, D. & De Azavedo, J. Reduced virulence of group A streptococcal Tn916 mutants that do not produce streptolysin S. Infect. Immun. 66, 1671–1679 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH (R.L. G. and V. N.), a VA merit award (R.L.G.), and grants from the American Skin Association (R.L.G.) and the Rockefeller Brothers Foundation (V.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Gallo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nizet, V., Ohtake, T., Lauth, X. et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414, 454–457 (2001). https://doi.org/10.1038/35106587

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35106587

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing