Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ATP-sensitive K+ channel in the mitochondrial inner membrane

Abstract

MITOCHONDRIA take up and extrude various inorganic and organic ions, as well as larger substances such as proteins1–4. The technique of patch clamping should provide real-time information on such transport and on energy transduction in oxidative phosphorylation. It has been applied to detect microscopic currents from mitochondrial membranes and conductances of ion channels in the 5–1,000 pS range in the outer and inner membranes5–10. These pores are not, however, selective for particular ions. Here we use fused giant mitoplasts prepared from rat liver mitochondria to identify a small conductance channel highly selective for K+ in the inner mitochondrial membrane. This channel can be reversibly inactivated by ATP applied to the matrix side under inside-out patch configuration; it is also inhibited by 4-aminopyridine and by glybenclamide. The slope conductance of the unitary currents measured at negative membrane potentials was 9.7±1.0pS (mean ± s.d., n = 6) when the pipette solution contained 100 mM K+ and the bathing solution 33.3 mM K+. Our results indicate that mitochondria depolarize by generating a K+ conductá-ance when ATP in the matrix is deficient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Diwan, J. J. Biochim. biophys. Acta. 895, 155–165 (1987).

    Article  CAS  Google Scholar 

  2. Crompton, M. in Current Topics in Membranes and Transport (eds Bronner, F. & Shamoo, A. E.) 25, 231–276 (Academic, Orlando, 1985).

    Google Scholar 

  3. Hay, R., Bohni, P. & Gasser, S. Biochim. biophys. Acta. 779, 65–87 (1984).

    Article  CAS  Google Scholar 

  4. Hartl, F. U., Pfanner, N., Nicholson, D. W. & Neupert, W. Biochim. biophys. Acta. 988, 1–45 (1989).

    Article  CAS  Google Scholar 

  5. Sorgato, M. C., Keller, B. U. & Stühmer, W. Nature 330, 498–500 (1987).

    Article  CAS  ADS  Google Scholar 

  6. Sorgato, M. C., Moran, O., De Pinto, V., Keller, B. U. & Stuehmer, W. J. Bioenerg. Biomembr. 4, 485–496 (1989).

    Article  Google Scholar 

  7. Kinnally, K. W., Campo, M. L. & Tedeschi, H. J. Bioenerg. Biomembr. 4, 497–506 (1989).

    Article  Google Scholar 

  8. Thieffry, M., Chich, J.-F., Goldschmidt, D. & Henry, J.-P. EMBO J. 7, 1449–1454 (1988).

    Article  CAS  Google Scholar 

  9. Henry, J.-P., Chich, J.-F., Goldschmidt, D. & Thieffry, M. J. Membr. Biol. 112, 139–147 (1989).

    Article  CAS  Google Scholar 

  10. Moran, O., Sandri, G., Panfili, E., Stühmer, W. & Sorgato, C. J. biol. Chem. 265, 980–913 (1990).

    Google Scholar 

  11. Schnaitman, C., Erwin, V. G. & Greenawalt, J. W. J. Cell Biol. 32, 719–735 (1967).

    Article  CAS  Google Scholar 

  12. Chan, T. L., Greenawalt, J. W. & Pedersen, P. L. J. Cell Biol. 45, 291–305 (1970).

    Article  CAS  Google Scholar 

  13. Chazotte, B., Wu, E.-S., Höchili, M. & Hackenbrokc, C. R. Biochim. biophys. Acta. 818, 87–95 (1985).

    Article  CAS  Google Scholar 

  14. Meves, H. & Pichon, Y. J. Physiol. (Lond.) 268, 511–532 (1977).

    Article  CAS  Google Scholar 

  15. Sturgess, N. C., Ashford, M. L. J., Cook, D. L. & Hales, C. N. Lancet 8453, 474–475 (1985).

    Article  Google Scholar 

  16. Ashcroft, F. M., Harrison, D. E. & Ashcroft, S. J. H. Nature 312, 446–448 (1984).

    Article  CAS  ADS  Google Scholar 

  17. Rottenberg, H. in Meth. Enzym. LV, 547–569 (Academic, New York, 1969).

    Google Scholar 

  18. Lehninger, A. L. in The Mitochondrion 180–204 (Benjamin, New York, 1964).

    Google Scholar 

  19. Hackenbrock, C. R. J. Cell Biol., 30, 269–297 (1966).

    Article  CAS  Google Scholar 

  20. Garlid, K. D. in Integration of Mitochondrial Function (eds Lemasters, J. J., Hackenbrock, C. R., Thurman, R. G. & Westerhoff, H. V.) 259–278 (Plenum, New York, 1988).

    Book  Google Scholar 

  21. Schnaitman, C. A. & Greenawalt, J. W. J. Cell Biol. 38, 158–175 (1968).

    Article  CAS  Google Scholar 

  22. Higuti, T. et al. Biochim. biophys. Acta 725, 1–9 (1983).

    Article  CAS  Google Scholar 

  23. Higuti, T. et al. Proc. natn. Acad. Sci. U.S.A. 82, 1331–1335 (1985).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoue, I., Nagase, H., Kishi, K. et al. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352, 244–247 (1991). https://doi.org/10.1038/352244a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352244a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing