Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Drosophila shaggy kinase and rat glycogen synthase kinase-3 have conserved activities and act downstream of Notch

Abstract

DURING neurogenesis in Drosophila, groups of equipotential, neurally competent cells choose between epidermal and neural fates1–4. Notch, a phylogenetically conserved transmembrane protein5–9, may act as a receptor4,10 in a lateral signalling pathway in which a single neural precursor is chosen from each group and the neural fate of the other cells is inhibited, causing them to differentiate into epidermis11–13. Possible intracellular transduction events mediating signals from Notch are, however, unknown, shaggy is also required for the lateral signal4,14 and encodes serine/threonine protein kinases15,16 with homology to the glycogen synthase kinase-3 (GSK-3) enzymes17 that act in signal transduction pathways in vertebrates17. We report here that, in transgenic flies, GSK-3/β can substitute for shaggy, and we also present a study of epistatic relationships between shaggy and gain and loss of function alleles of Notch. The results indicate that shaggy/GSK-3 is part of a signalling pathway downstream of Notch

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Campos-Ortega, J. in Development of Drosophila melanogaster (eds Bate, M. & Martinez-Arias, A.) (Cold Spring Harbor Laboratory Press, New York, in the press).

  2. Skeath, J. B. & Carroll, S. B. Development 114, 939–946 (1992).

    CAS  PubMed  Google Scholar 

  3. Simpson, P. & Carteret, C. Development 110, 927–932 (1990).

    CAS  PubMed  Google Scholar 

  4. Heitzler, P. & Simpson, P. Cell 64, 1083–1092 (1991).

    Article  CAS  Google Scholar 

  5. Wharton, K. A., Johansen, K. M., Xu, T. & Artavanis-Tsakonas, S. Cell 43, 567–581 (1985).

    Article  CAS  Google Scholar 

  6. Kidd, S., Kelley, M. R. & Young, M. W. Molec. cell. Biol. 6, 3094–3108 (1986).

    Article  CAS  Google Scholar 

  7. Coffman, C., Harris, W. & Kintner, C. Science 249, 1438–1441 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Ellisen, L. W. et al. Cell 66, 649–661 (1991).

    Article  CAS  Google Scholar 

  9. Weinmaster, G., Roberts, V. J. & Lemke, G. Development 113, 199–205 (1991).

    CAS  PubMed  Google Scholar 

  10. Rebay, I. et al. Cell 67, 687–699 (1991).

    Article  CAS  Google Scholar 

  11. Doe, C. A. & Goodman, C. S. Devl Biol. 111, 206–219 (1985).

    Article  CAS  Google Scholar 

  12. Stern, C. Am. Sci. 42, 213–247 (1954).

    Google Scholar 

  13. Wigglesworth, V. B. J. exp. Biol. 17, 180–200 (1940).

    Google Scholar 

  14. Simpson, P. & Carteret, C. Development 106, 57–66 (1989).

    CAS  PubMed  Google Scholar 

  15. Siegfried, E., Perkins, L. A., Capaci, T. M. & Perrimon, P. Nature 345, 825–829 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Bourouis, M. et al. EMB0 J. 9, 2877–2884 (1990).

    Article  CAS  Google Scholar 

  17. Woodgett, J. R. Trends Biochem. Sci. 16, 177–181 (1991).

    Article  CAS  Google Scholar 

  18. Heitzler, P. & Simpson, P. Development (in the press).

  19. Kelley, M. R., Kidd, S., Deutsch, W. A. & Young, M. W. Cell 51, 539–548 (1987).

    Article  CAS  Google Scholar 

  20. Ruel, L., Pantesco, V., Lutz, Y., Simpson, P. & Bourouis, M. EMBO J. (in the press).

  21. Hartenstein, V. & Posakony, J. W. Devl. Biol. 142, 13–30 (1990).

    Article  CAS  Google Scholar 

  22. Woodgett, J. R. EMBO J. 9, 2431–2438 (1990).

    Article  CAS  Google Scholar 

  23. Bourouis, M., Heitzler, P., El Messal, M. & Simpson, P. Nature 341, 442–444 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Ghysen, A. & Dambly-Chaudière, C. Genes Dev. 2, 495–501 (1988).

    Article  CAS  Google Scholar 

  25. Cubas, P., de Celis, J.-F., Campuzano, S. & Modolell, J. Genes Dev. 5, 996–1008 (1991).

    Article  CAS  Google Scholar 

  26. Boyle, W. B. et al. Cell 64, 573–584 (1991).

    Article  CAS  Google Scholar 

  27. Sakskela, K., Mäkela, T. P., Hughes, K., Woodgett, J. R. & Alitalo, K. Oncogene 7, 347–353 (1992).

    Google Scholar 

  28. Greenwald, I. & Rubin, G. Cell 68, 271–281 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruel, L., Bourouis, M., Heitzler, P. et al. Drosophila shaggy kinase and rat glycogen synthase kinase-3 have conserved activities and act downstream of Notch. Nature 362, 557–560 (1993). https://doi.org/10.1038/362557a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362557a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing