Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sexually dimorphic sterility phenotypes in HoxalO-deficient mice

Abstract

THE Abdominal B (AbdB) genes constitute a distinct subfamily of homeobox genes that exhibit posterior domains of expression1,2, including the genital imaginal disc in Drosophila and the develop-ing urogenital system in vertebrates3,4. We have mutated the AbdB gene Hoxal0 in mice. We report here that homozygotes are fully viable and show an anterior homeotic transformation of lumbar vertebrae. All male homozygotes manifest bilateral cryptorchidism resulting in severe defects in spermatogenesis and increasing steril-ity with age. Female homozygotes ovulate normally, but about 80% are sterile because of death of embryos between days 2.5 and 3.5 post coitum. This coincides spatially and temporally with expression of maternal Hoxal0 in distal oviductal and uterine epithelium. These results indicate a role for AbdB Hox genes in male and female fertility and suggest that maternal Hoxal0 is required to regulate the expression of a factor that affects the viability of preimplantation embryos.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Izpisúa-Belmonte, J. C., Falkenstein, H., Dollé, P., Renucci, A. & Duboule, D. EMBO J. 10, 2279–2289 (1991).

    Article  Google Scholar 

  2. Krumlauf, R. Cell 78, 191–201 (1994).

    Article  CAS  Google Scholar 

  3. Celnicker, S. & Lewis, E. B. Genes Dev. 1, 111–123 (1987).

    Article  Google Scholar 

  4. Dollé, P., Izpisúa-Belmonte, Tickle, C. & Duboule, D. Genes Dev. 5, 1767–1776 (1991).

    Article  Google Scholar 

  5. Lyon, M. & Hawkes, S. Nature 227, 1217–1219 (1970).

    Article  ADS  CAS  Google Scholar 

  6. Radovick, S. et al. Proc. natn. Acad. Sci. U.S.A. 88, 3402–3406 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Wensing, C. J. G. Horm. Res. 30, 144–152 (1988).

    Article  CAS  Google Scholar 

  8. Kaufman, M. H. The Atlas of Mouse Development (Academic, San Diego, 1992).

    Google Scholar 

  9. Park, W.-H. & Hutson, J. J. Ped. Surg. 26, 615–617 (1991).

    Article  CAS  Google Scholar 

  10. Wells, L. J. Anat. Rec. 88, 465 (1944).

    Google Scholar 

  11. Bowman, P. & McLaren, A. J. Embryol. exp. Morphol. 24, 203–207 (1970).

    CAS  PubMed  Google Scholar 

  12. Erbach, G., Lawitts, J., Papaioannou, V. & Biggers, J. Biol. Reprod. 50, 1027–1033 (1994).

    Article  CAS  Google Scholar 

  13. Sakkas, D. & Trounson, A. O. J. reprod. Fert. 90, 109–118 (1990).

    Article  CAS  Google Scholar 

  14. Benson, G. V., Nguyen, T.-H. E. & Maas, R. L. Molec. cell. Biol. 15, 1591–1601 (1995).

    Article  CAS  Google Scholar 

  15. Brown, J. & Whittingham, D. Development 112, 99–105 (1991).

    CAS  PubMed  Google Scholar 

  16. Schultz, G. & Heyner, S. Oxford Rev. reprod. Biol. 15, 43–81 (1993).

    CAS  Google Scholar 

  17. Adamson, E. D. J. Cell Biochem. 53, 280–287 (1993).

    Article  CAS  Google Scholar 

  18. Pollard, J., Pampfer, S., Daiter, E. & Arcecci, R. in Uterine and Embryonic Factors in Early Pregnancy (eds Strauss, J. & Lyttle, R. C.) 109 (Plenum, New York, 1991).

    Google Scholar 

  19. Hogan, B., Costantini, F. & Lacy, E. in Manipulating the Mouse Embryo 89–94 (Cold Spring Harbor Laboratory Press, New York, 1986).

    Google Scholar 

  20. Satokata, I. & Maas, R. Nature Genet. 6, 348–356 (1994).

    Article  CAS  Google Scholar 

  21. Li, E., Bestor, T. & Jaenisch, R. Cell 69, 915–926 (1992).

    Article  CAS  Google Scholar 

  22. Bradley, A. in Teratocarcinomas and Embryonic Stem Cells, a Practical Approach (ed. Robertson, E. J.) 113–151 (IRL, Oxford, 1987).

    Google Scholar 

  23. Sassoon, D. & Rosenthal, N. Meth. Ezym. 225, 384–404 (1993).

    CAS  Google Scholar 

  24. Shen, M. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 89, 8240–8244 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satokata, I., Benson, G. & Maas, R. Sexually dimorphic sterility phenotypes in HoxalO-deficient mice. Nature 374, 460–463 (1995). https://doi.org/10.1038/374460a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374460a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing