Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An IRF-1-dependent pathway of DNA damage-induced apoptosis in mitogen-activated T lymphocytes

Abstract

LYMPHOCYTES are particularly susceptible to DNA damage-induced apoptosis, a response which may serve as a form of 'altruistic suicide' to counter their intrinsic high potential for mutation and clonal expansion1. The tumour suppressor p53 has been shown to regulate this type of apoptosis in thymocytes2,3, but an as yet unknown, p53-independent pathway(s) appears to mediate the same event in mitogen-activated mature T lymphocytes4. Here we show that DNA damage-induced apoptosis in these T lymphocytes is dependent on the antioncogenic transcription factor interferon regulatory factor (IRF)-l (refs 5-7). Thus two different anti-onco-genic transcription factors, p53 and IRF-1, are required for distinct apoptotic pathways in T lymphocytes. We also show that mitogen induction of the interleukin-lβ converting enzyme (ICE) gene8á¤-10, a mammalian homologue of the Caenorhabditis elegans cell death gene ced-3, is IRF-1-dependent. Ectopic overexpression of IRF-1 results in the activation of the endogenous gene for ICE and enhances the sensitivity of cells to radiation-induced apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cohen, J. J., Duke, R. C., Fadok, V. A. & Sellins, K. S. A. Rev. Immun. 10, 267–293 (1992).

    Article  CAS  Google Scholar 

  2. Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A. & Jacks, T. Nature 362, 847–849 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Clarke, A. R. et al. Nature 362, 849–852 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Strasser, A., Harris, A. W., Jacks, T. & Cory, S. Cell 79, 329–339 (1994).

    Article  CAS  Google Scholar 

  5. Miyamoto, M. et al. Cell 54, 903–913 (1988).

    Article  CAS  Google Scholar 

  6. Harada, H. et al. Science 259, 971–974 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Tanaka, N. et al. Cell 77, 829–839 (1994).

    Article  CAS  Google Scholar 

  8. Cerretti, D. P. et al. Science 256, 97–100 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Thornberry, N. A. et al. Nature 356, 768–774 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. Cell 75, 641–652 (1993).

    Article  CAS  Google Scholar 

  11. Harada, H. et al. Cell 63, 303–312 (1990).

    Article  CAS  Google Scholar 

  12. Tanaka, N., Kawakami, T. & Taniguchi, T. Molec. cell. Biol. 13, 4531–4538 (1993).

    Article  CAS  Google Scholar 

  13. Willman, C. L. et al. Science 259, 968–971 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Harada, H. et al. Oncogene 9, 3313–3320 (1994).

    CAS  PubMed  Google Scholar 

  15. Miura, M., Zhu, H., Rotello, R., Hartwieg, E. A. & Yuan, J. Cell 75, 653–660 (1993).

    Article  CAS  Google Scholar 

  16. Wang, L., Miura, M., Bergeron, L., Zhu, H. & Yuan, J. Cell 78, 739–750 (1994).

    Article  CAS  Google Scholar 

  17. Reed, J. C. J. Cell Biol. 124, 1–6 (1994).

    Article  CAS  Google Scholar 

  18. Oltvai, Z. N., Milliman, C. & Korsmeyer, S. J. Cell 74, 609–619 (1993).

    Article  CAS  Google Scholar 

  19. Yin, X.-M., Oltvai, Z. N. & Korsmeyer, S. J. Nature 369, 321–333 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Kumar, V. et al. EMBO J. 5, 2231–2236 (1986).

    Article  CAS  Google Scholar 

  21. Eilers, M., Picard, D., Yamamoto, K. R. & Bishop, J. M. Nature 340, 66–68 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Kirchhoff, S., Schaper, F. & Hauser, H. Nucleic Acids Res. 21, 2881–2889 (1993).

    Article  CAS  Google Scholar 

  23. Shibuya, H., Yoneyama, M., Ninomiya-Tsuji, J., Matsumoto, K. & Taniguchi, T. Cell 70, 57–67 (1992).

    Article  CAS  Google Scholar 

  24. Casano, F. J., Rolando, A. M., Mudgett, J. S. & Molineaux, S. M. Genomics 20, 474–481 (1994).

    Article  CAS  Google Scholar 

  25. Cerretti, D. P. et al. Genomics 20, 468–473 (1994).

    Article  CAS  Google Scholar 

  26. Miyashita, T. et al. Oncogene 9, 1799–1805 (1994).

    CAS  Google Scholar 

  27. Li, P. I. et al. Cell 80, 401–411 (1995).

    Article  CAS  Google Scholar 

  28. Matsuyama, T. et al. Cell 75, 83–97 (1993).

    Article  CAS  Google Scholar 

  29. Tsukada, T. et al. Oncogene 8, 3313–3322 (1993).

    CAS  PubMed  Google Scholar 

  30. Tsujimoto, Y. & Croce, C. M. Proc. natn. Acad. Sci. U.S.A. 83, 5214–5218 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamura, T., Ishihara, M., Lamphier, M. et al. An IRF-1-dependent pathway of DNA damage-induced apoptosis in mitogen-activated T lymphocytes. Nature 376, 596–599 (1995). https://doi.org/10.1038/376596a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376596a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing