Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Regulation of transcription by proteins that control the cell cycle

Abstract

In eukaryotes, progression of a cell through the cell cycle is partly controlled at the level of transcriptional regulation. Yeast and mammalian cells use similar mechanisms to achieve this regulation. Although gaps still remain, progress has been made recently in connecting the links between the cell's cycle and its transcriptional machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Connections between cell-cycle regulators and the mammalian transcription machinery.

Similar content being viewed by others

References

  1. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  Google Scholar 

  2. Huang, H. J. et al. Supression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 242, 1563–1566 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Goodrich, D. W., Wang, N. P., Qian, Y.-W., Lee, E. Y.-H. P. & Lee, W.-H. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 67, 293–302 (1991).

    Article  CAS  Google Scholar 

  4. Hinds, P. W. et al. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cells 70, 993–1006 (1992).

    Article  CAS  Google Scholar 

  5. Connell-Crowley, L., Harper, J. W. & Goodrich, D. W. Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation. Mol. Biol. Cell 8, 287–301 (1997).

    Article  CAS  Google Scholar 

  6. Dyson, N. pRB, p107, and the regulation of the E2F transcription factor. J. Cell Sci. (suppl.) 18, 81–87 (1994).

    Article  CAS  Google Scholar 

  7. Hiebert, S. W., Chellappan, S. P., Horowitz, J. M. & Nevins, J. R. The interaction of pRb with E2F inhibits the transcriptional activity of E2F. Genes Dev. 6, 177–185 (1992).

    Article  CAS  Google Scholar 

  8. Helin, K., Harlow, E. & Fattaey, A. R. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol. Cell Biol. 13, 6501–6508 (1993).

    Article  CAS  Google Scholar 

  9. Dynlacht, B. D., Flores, O., Lees, J. A. & Harlow, E. Differential regulation of E2F trans-activation by cyclin-cdk2 complexes. Genes Dev. 8, 1772–1786 (1994).

    Article  CAS  Google Scholar 

  10. Weintraub, S. J. et al. Retinoblastoma protein switches the E2F site from positive to negative element. Nature 375, 812–815 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Zwicker, J., Liu, N., Engeland, K., Lucibello, F. & Muller, R. Cell cycle regulation of E2F site occupation in vivo. Science 271, 1595–1597 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Johnson, D. G., Ohtani, K. & Nevins, J. R. Autoregulatory control of E2F-1 expression in response to positive and negative regulators of cell cycle progression. Genes Dev. 8, 1514–1525 (1994).

    Article  CAS  Google Scholar 

  13. Yamasaki, L. et al. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 85, 537–548 (1996).

    Article  CAS  Google Scholar 

  14. Field, S. et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85, 549–561 (1996).

    Article  CAS  Google Scholar 

  15. Singh, P., Coe, J. & Hong, W. Arole for retinoblastoma protein in potentiating transcriptional activation by the glucocorticoid receptor. Nature 374, 562–565 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Sánchez, I. & Dynlacht, B. Transcriptional control fo the cell cycle. Curr. Opin. Cell Biol. 8, 318–324 (1996).

    Article  Google Scholar 

  17. Cavanaugh, A. H. et al. Activity of RNA polymerase I transcription factor UBF blocked by Rb gene product. Nature 374, 177–180 (1995).

    Article  ADS  CAS  Google Scholar 

  18. White, R., Trouche, D., Martin, K., Jackson, S. & Kouzarides, T. Repression of RNA polymerase III transcription by the retinoblastoma protein. Nature 382, 88–90 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Zhu, L. et al. Inhibition of cell proliferation by p107, a relative of the retinoblastoma protein. Genes Dev. 7, 1111–1125 (1993).

    Article  CAS  Google Scholar 

  20. Zamanian, M. & Thangue, N. B. L. Transcriptional repression by the Rb-related protein p107. Mol. Biol. Cell 4, 389–396 (1993).

    Article  CAS  Google Scholar 

  21. Vairo, G., Livingston, D. M. & Ginsberg, D. Functional interaction between E2F-4 and p130: Evidence for distinct mechanisms underlying growth suppression by different retinoblastoma protein family members. Genes Dev. 9, 869–881 (1995).

    Article  CAS  Google Scholar 

  22. Lee, M.-H. et al. Targeted disruption of p107: functional overlap between p107 and Rb. Genes Dev. 10, 1621–1632 (1996).

    Article  CAS  Google Scholar 

  23. Cobrinik, D. et al. Shared role of the pRB-related p130 and p107 proteins in limb development. Genes Dev. 10, 1633–1644 (1996).

    Article  CAS  Google Scholar 

  24. Zhu, L., Harlow, E. & Dynlacht, B. D. p107 uses a p21CIP1-related domain to bind cyclin/cdk2 and regulate interactions with E2F. Genes Dev. 9, 1740–1752 (1995).

    Article  CAS  Google Scholar 

  25. Woo, M. S.-A., Sanchez, I. & Dynlacht, B. D. p130 and p107 use a conserved domain to inhibit cellular cyclin-dependent kinase activity. Mol. Cell. Biol. 17, 3566–3579 (1997).

    Article  CAS  Google Scholar 

  26. Mudryj, M. et al. Cell cycle regulation of the E2F transcription factor involves an interaction with cyclin A. Cell 65, 1243–1253 (1991).

    Article  CAS  Google Scholar 

  27. Krek, W. et al. Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell 78, 161–172 (1994).

    Article  CAS  Google Scholar 

  28. Dynlacht, B. D., Moberg, K., Lees, J. A., Harlow, E. & Zhu, L. Specific regulation of E2F family members by cyclin-dependent kinases. Mol. Cell. Biol. 17, 3867–3875 (1997).

    Article  CAS  Google Scholar 

  29. Prives, C. & Manfredi, J. J. The p53 tumor suppressor protein. Genes Dev. 7, 529–534 (1993).

    Article  CAS  Google Scholar 

  30. Wang, Y. & Prives, C. Increased and altered DNA binding of p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 376, 88–91 (1995).

    Article  ADS  CAS  Google Scholar 

  31. Bischoff, J. R., Friedman, P. N., Marshak, D. R., Prives, C. & Beach, D. Human p53 is phosphorylated by p60-cdc2 and cyclin B-cdc2. Proc. Natl Acad. Sci. USA 87, 4766–4770 (1990).

    Article  ADS  CAS  Google Scholar 

  32. Sturzbecher, H.-W. et al. p53 interacts with p34cdc2 in mammalian cells: implications for cell cycle control and oncogenesis. Oncogene 5, 795–801 (1990).

    CAS  PubMed  Google Scholar 

  33. Koch, C. & Nasmyth, K. Cell cycle regulated transcription in yeast. Curr. Opin. Cell Biol. 6, 451–459 (1994).

    Article  CAS  Google Scholar 

  34. McIntosh, E. M. MCB elements and the regulation of DNA replicaiton in yeast. Curr. Genet. 24, 185–192 (1993).

    Article  CAS  Google Scholar 

  35. Amon, A., Tyers, M., Futcher, B. & Nasmyth, K. Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74, 993–1007 (1993).

    Article  CAS  Google Scholar 

  36. Koch, C., Schleiffer, S., Ammerer, G. & Nasmyth, K. Switching transcription on and off during the yeast cell cycle: Cln/Cdc28 kinases activate bound transcription factor SBF (Swi4/Swi6) at start, whereas Clb/Cdc28 kinases displace it from the promoter in G2. Genes Dev. 10, 129–141 (1996).

    Article  CAS  Google Scholar 

  37. Conaway, R. C. & Conaway, J. W. An RNA polymerase II transcription factor has an associated DNA-dependent ATPase (dATPase) activity strongly stimulated by the TATA region of promoters. Proc. Natl Acad. Sci. USA 86, 7356–7360 (1989).

    Article  ADS  CAS  Google Scholar 

  38. Feaver, W. J., Gileadi, O., Li, Y. & Kornberg, R. D. CTD kinase associated with yeast RNA polymerase II initiation factor b. Cell 67, 1223–1230 (1991).

    Article  CAS  Google Scholar 

  39. Serizawa, H., Conaway, R. C. & Conaway, J. W. Multifunctional RNA polymerase II initiation factor d from rat liver: relationship between carboxy-terminal kinase ATPase and DNA helicase activities. J. Biol. Chem. 268, 17300–17308 (1993).

    CAS  PubMed  Google Scholar 

  40. Lu, H., Zawel, L., Fisher, L., Egly, J.-M. & Reinberg, D. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature 358, 641–645 (1992).

    Article  ADS  CAS  Google Scholar 

  41. Sancar, A. Mechanisms of DNA excision repair. Science 266, 1954–1956 (1994).

    Article  ADS  CAS  Google Scholar 

  42. Nigg, E. A. Cyclin-dependent kinase 7: at the cross-roads of transcription, DNA repair and cell cycle control? Curr. Opin. Cell Biol. 8, 312–317 (1996).

    Article  CAS  Google Scholar 

  43. Fisher, R. P. & Morgan, D. O. Anovel cyclin associates with MO15/cdk7 to form the cdk-activating kinase. Cell 78, 713–724 (1994).

    Article  CAS  Google Scholar 

  44. Makela, T. P. et al. Acyclin associated with the CDK-activating kinase MO15. Nature 371, 254–257 (1994).

    Article  ADS  CAS  Google Scholar 

  45. Roy, R. et al. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79, 1093–1101 (1994).

    Article  CAS  Google Scholar 

  46. Shiekhattar, R. et al. CDK-activating kinase complex is a component of human transcription factor. Nature 374, 283–287 (1995).

    Article  ADS  CAS  Google Scholar 

  47. Serizawa, H. et al. Association of CDK-activating kinase subunits with transcription factor TFIIH. Nature 374, 280–282 (1995).

    Article  ADS  CAS  Google Scholar 

  48. Cismowski, M. J., Laff, G. M., Solomon, M. J. & Reed, S. I. KIN28 encodes a C-terminal domain kinase that controls mRNA transcription in Saccharomyces cerevisiae but lacks cyclin-dependent kinase activating (CAK) activity. Mol. Cell. Biol. 15, 2983–2992 (1995).

    Article  CAS  Google Scholar 

  49. Feaver, W. J., Svejstrup, J. Q., Henry, N. L. & Kornberg, R. D. Relationship of CDK-activating kinase and RNA polymerase II TD kinase TFIIH/TFIIK. Cell 79, 1103–1109 (1994).

    Article  CAS  Google Scholar 

  50. Espinoza, F. H., Farrell, A., Erdjument-Bromage, H., Tempst, P. & Morgan, D. O. Acyclin-dependent kinase-activating kinase (CAK) in budding yeast unrelated to vertebrate AK. Science 273, 1714–1717 (1996).

    Article  ADS  CAS  Google Scholar 

  51. Thuret, J. Y., Valay, J. G., Faye, G. & Mann, C. Civ1 (CAK in vivo), a novel Cdk-activating kinase. Cell 86, 565–576 (1996).

    Article  CAS  Google Scholar 

  52. Kaldis, P., Sutton, A. & Solomon, M. J. The Cdk-activating kinase (CAK) from budding yeast. Cell 86, 553–564 (1996).

    Article  CAS  Google Scholar 

  53. Makela, T. P. et al. Akinase-deficient transcription factor TFIIH is functional in basal and activated transcription. Proc. Natl Acad. Sci. USA 92, 5174–5178 (1995).

    Article  ADS  CAS  Google Scholar 

  54. Akoulitchev, S., Makela, T. P., Weinberg, R. A. & Reinberg, D. Requirement for TFIIH kinase activity in transcription by RNA polymerase II. Nature 377, 557–560 (1995).

    Article  ADS  CAS  Google Scholar 

  55. Yankulov, K. Y. & Bentley, D. L. Regulation of CDK7 substrate specificity by MAT1 and TFIIH. EMBO J. 16, 1638–1646 (1997).

    Article  CAS  Google Scholar 

  56. Rossignol, M., Kolb-Cheynel, I. & Egly, J.-M. Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH. EMBO J. 16, 1628–1637 (1997).

    Article  CAS  Google Scholar 

  57. Liao, S.-M. et al. Akinase–cyclin pair in the RNA polymerase II holoenzyme. Nature 374, 193–196 (1995).

    Article  ADS  CAS  Google Scholar 

  58. Kuchin, S., Yeghiayan, P. & Carlson, M. Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast. Proc. Natl Acad. Sci. USA 92, 4006–4010 (1995).

    Article  ADS  CAS  Google Scholar 

  59. Rickert, P., Seghezzi, W., Shanahan, F., Cho, H. & Lees, E. Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene 12, 2631–2640 (1996).

    CAS  PubMed  Google Scholar 

  60. Tassan, J.-P., Jaquenoud, M., Leopold, P., Schultz, S. J. & Nigg, E. A. Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C. Proc. Natl Acad. Sci. USA 92, 8871–8875 (1995).

    Article  ADS  CAS  Google Scholar 

  61. Maldonado, E. et al. Ahuman RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 381, 86–89 (1996).

    Article  ADS  CAS  Google Scholar 

  62. Léopold, P. & O'Farrell, P. H. An evolutionarily conserved cyclin homolog from Drosophila rescues yeast deficient in G1 cyclins. Cell 66, 1207–1216 (1991).

    Article  Google Scholar 

  63. Lew, D. J., Dulic, V. & Reed, S. I. Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) fucntion in yeast. Cell 66, 1197–1206 (1991).

    Article  CAS  Google Scholar 

  64. Gottesfeld, J. M., Wolf, V. J., Dang, T., Forbes, D. J. & Hartl, P. Mitotic repression of RNA polymerase III transcription in vitro mediated by phosphorylation of a TFIIIB component. Science 263, 81–84 (1994).

    Article  ADS  CAS  Google Scholar 

  65. Segil, N., Guermah, M., Hoffmann, A., Roeder, R. G. & Heintz, N. Mitotic regulation of TFIID: inhibition of activator-dependent transcription and changes in subcellular localization. Genes Dev. 10, 2389–2400 (1996).

    Article  CAS  Google Scholar 

  66. Martinez-Balbas, M., Dey, A., Rabindran, S., Ozato, K. & Wu, C. Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83, 29–38 (1995).

    Article  CAS  Google Scholar 

  67. Colgan, D. F., Murthy, K. G. K., Prives, C. & Manley, J. Cell-cycle-related regulation of poly(A) polymerase by phsophorylation. Nature 384, 282–285 (1996).

    Article  ADS  CAS  Google Scholar 

  68. Moll, T., Tebb, G., Surana, U., Robitsch, H. & Nasmyth, K. The role of phosphorylation and the CD28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell 66, 743–758 (1991).

    Article  CAS  Google Scholar 

  69. Lane, S., Farlie, P. & Watson, R. B-Myb function can be markedly enhanced by cyclin A-dependent kinase and protein truncation. Oncogene 14, 2445–2453 (1997).

    Article  CAS  Google Scholar 

  70. Hara, E., Hall, M. & Peters, G. Cdk2-dependent phosphorylation of Id2 modulates activity of E2A-related transcription factors. EMBO J. 16, 332–342 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank E. Harlow, R. Erikson and I Sanchez for suggestions on this review.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dynlacht, B. Regulation of transcription by proteins that control the cell cycle. Nature 389, 149–152 (1997). https://doi.org/10.1038/38225

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/38225

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing