Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bcl-xL forms an ion channel in synthetic lipid membranes

Abstract

Bcl-2-related proteins are critical regulators of cell survival that are localized to the outer mitochondrial, outer nuclear and endoplasmic reticulum membranes1–4. Despite their physiological importance, the biochemical function of Bcl-2-related proteins has remained elusive. The three-dimensional structure of Bcl-xL, an inhibitor of apoptosis, was recently shown to be similar to the structures of the pore-forming domains of bacterial toxins5. A key feature of these pore-forming domains is the ability to form ion channels in biological membranes6,7. Here we demonstrate that Bcl-xL shares this functional feature. Like the bacterial toxins, Bcl-xL can insert into either synthetic lipid vesicles or planar lipid bilayers and form an ion-conducting channel. This channel is pH-sensitive and becomes cation-selective at physiological pH. The ion-conducting channel(s) formed by Bcl-xL display multiple conductance states that have identical ion selectivity. Together, these data suggest that Bcl-xL may maintain cell survival by regulating the permeability of the intracellular membranes to which it is distributed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. White, E. Genes Dev. 10, 1–15 (1996).

    Article  CAS  Google Scholar 

  2. Yang, E. & Korsmeyer, S. J. Blood 88, 386–401 (1996).

    CAS  PubMed  Google Scholar 

  3. Lithgow, T., van Driel, R., Bertram, J. F. & Strasser, A. Cell Growth Differ. 5, 411–417 (1994).

    CAS  PubMed  Google Scholar 

  4. Krajewski, S. et al. Cancer Res. 53, 4701–4714 (1993).

    CAS  PubMed  Google Scholar 

  5. Muchmore, S. W. et al. Nature 381, 335–341 (1996).

    Article  ADS  CAS  Google Scholar 

  6. London, E. Biochim. Biophys. Acta 1113, 25–51 (1992).

    Article  CAS  Google Scholar 

  7. Cramer, W. A. et al. Annu. Rev. Biophys. Biomol. Struct. 24, 611–641 (1995).

    Article  CAS  Google Scholar 

  8. Chen-Levy, Z. & Cleary, M. L. J. Biol. Chem. 265, 4929–4933 (1990).

    CAS  PubMed  Google Scholar 

  9. Nguyen, M., Millar, D. G., Yong, V. W., Korsmeyer, S. J. & Shore, G. C. J. Biol. Chem. 268, 25265–2526 (1993).

    CAS  PubMed  Google Scholar 

  10. Parker, M. W. & Pattus, F. Trends Biochem. Sci. 18, 391–395 (1993).

    Article  CAS  Google Scholar 

  11. Choe, S. et al. Nature 357, 216–222 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Davidson, V. L., Heymann, J. B., Zhang, Y. L. & Cohen, F. S. J. Membr. Biol. 79, 105–118 (1984).

    Article  CAS  Google Scholar 

  13. Zakharov, S. D., Heymann, J. B., Zhang, Y. L. & Cramer, W. A. Biophys. J. 70, 2774–2783 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Lam, M. et al. Proc. Natl Acad. Sci. USA 91, 6569–6573 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Zhu, W. et al. EMBO J. 15, 4130–4141 (1996).

    Article  CAS  Google Scholar 

  16. Perez-Terzic, C., Pyle, J., Jaconi, M., Stehno-Bittel, L. & Clapham, D. E. Science 273, 1875–1877 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Mannella, C. A. Trends Biochem. Sci. 17, 315–320 (1992).

    Article  CAS  Google Scholar 

  18. Zoratti, M. & Szabo, I. Biochim. Biophys. Acta 1241, 139–176 (1995).

    Article  Google Scholar 

  19. Zamzami, N. et al. J. Exp. Med. 183, 1533–1544 (1996).

    Article  CAS  Google Scholar 

  20. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. Cell 86, 147–157 (1996).

    Article  CAS  Google Scholar 

  21. Martin, S. J. & Green, D. R. Cell 82, 349–352 (1995).

    Article  CAS  Google Scholar 

  22. Slatin, S. L., Abrams, C. K. & English, L. Biochem. Biophys. Res. Commun. 169, 765–772 (1990).

    Article  CAS  Google Scholar 

  23. Hoch, D. H. et al. Proc. Natl Acad. Sci. USA 82, 1692–1696 (1985).

    Article  ADS  CAS  Google Scholar 

  24. Raymond, L., Slatin, S. L. & Finkelstein, A. J. Membr. Biol. 84, 173–181 (1985).

    Article  CAS  Google Scholar 

  25. Wistow, G. Trends Biochem. Sci. 18, 301–306 (1993).

    Article  CAS  Google Scholar 

  26. Tomarev, S. I. & Piatigorsky, J. Eur. J. Biochem. 235, 449–465 (1996).

    Article  CAS  Google Scholar 

  27. Peterson, A. A. & Cramer, W. A. J. Membr. Biol. 99, 197–204 (1987).

    Article  CAS  Google Scholar 

  28. Cramer, W. A. & Knaff, D. B. Energy Transduction in Biological Membranes, a Textbook of Bioenergetics (Springer, New York, 1990).

    Book  Google Scholar 

  29. Györke, S. & Fill, M. Science 260, 807–809 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minn, A., Vélez, P., Schendel, S. et al. Bcl-xL forms an ion channel in synthetic lipid membranes. Nature 385, 353–357 (1997). https://doi.org/10.1038/385353a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385353a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing