Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ligand-induced changes in integrin expression regulate neuronal adhesion and neurite outgrowth

Abstract

Receptors of the integrin family are expressed by every cell type and are the primary means by which cells interact with the extracellular matrix. The control of integrin expression affects a wide range of developmental and cellular processes, including the regulation of gene expression, cell adhesion, cell morphogenesis and cell migration1,2,3. Here we show that the concentration of substratum-bound ligand (laminin) post-translationally regulates the amount of receptor (α6β1 integrin) expressed on the surface of sensory neurons. When ligand availability is low, surface amounts of receptor increase, whereas integrin RNA and total integrin protein decrease. Ligand concentration determines surface levels of integrin by altering the rate at which receptor is removed from the cell surface. Furthermore, increased expression of integrin at the cell surface is associated with increased neuronal cell adhesion and neurite outgrowth. These results indicate that integrin regulation maintains neuronal growth-cone motility over a broad range of ligand concentrations, allowing axons to invade different tissues during development and regeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of dorsal root ganglion (DRG) neurite outgrowth and integrin expression when cultured on different substratum densities of laminin or on fibronectin.
Figure 2: Analysis of α6 integrin RNA, total α6 integrin protein and surface α6 integrin protein from cells cultured on different concentrations of ligand.
Figure 3: Increased surface expression of integrin receptors increases both cell adhesion and rate of neurite outgrowth.
Figure 4: Summary of the effect of different ligand densities on the surface expression of integrins in growing neurons based on our results and previous work6,16,17,18,28,29.

Similar content being viewed by others

References

  1. Reichardt, L. F. & Tomaselli, T. J. Extracellular matrix molecules and their receptors. Annu. Rev. Neurosci. 14, 531–570 (1991).

    Article  CAS  Google Scholar 

  2. Letourneau, P. C., Condic, M. L. & Snow, D. M. Interactions of developing neurons with the extracellular matrix. J. Neurosci. 14, 915–928 (1994).

    Article  CAS  Google Scholar 

  3. Clark, E. A. & Brugge, J. S. Integrins and signal transduction pathways: the road taken. Science 268, 233–239 (1995).

    Article  ADS  CAS  Google Scholar 

  4. McCarthy, J. B. & Furcht, L. T. Laminin and fibronectin promote the haptotactic migration of B16 mouse melanoma cells in vitro. J. Cell Biol. 98, 1474–1480 (1984).

    Article  CAS  Google Scholar 

  5. Arroyo, A. G. et al. Regulation of the VLA integrin-ligand interactions through the beta 1 subunit. J. Cell Biol. 117, 659–670 (1992).

    Article  CAS  Google Scholar 

  6. Duband, J. L., Dufour, S., Yamada, S. S., Yamada, K. M. & Thiery, J. P. Neural crest cell locomotion induced by antibodies to beta 1 integrins. A tool for studying the roles of substratum molecular avidity and density in migration. J. Cell Sci. 98, 517–532 (1991).

    CAS  PubMed  Google Scholar 

  7. Goodman, S. L., Risse, G. & von der Mark, K. The E8 subfragment of laminin promotes locomotion of myoblasts over extracelular matrix. J. Cell Biol. 109, 799–809 (1989).

    Article  CAS  Google Scholar 

  8. Palechek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenbruger, D. A. & Horwitz, A. F. Integrin–ligand binding properties govern cell migration speed through cell–substratum adhesiveness. Nature 385, 537–540 (1997).

    Article  ADS  Google Scholar 

  9. Rogers, S. L., Edson, K. J., Letourneau, P. C. & McLoon, S. C. Distribution of laminin in the developing peripheral nervous system of the chick. Development 113, 429–435 (1986).

    CAS  Google Scholar 

  10. Buettner, H. M. & Pittman, R. N. Quantitative effects of laminin concentration on neurite outgrowth in vitro. Dev. Biol. 145, 266–276 (1991).

    Article  CAS  Google Scholar 

  11. Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).

    Article  CAS  Google Scholar 

  12. Song, W. K., Wang, W., Foster, R. F., Bielser, D. A. & Kaufman, S. J. H36-alpha 7 is a novel integrin α chain that is developmentally regulated during skeletal myogenesis. J. Cell Biol. 117, 643–657 (1992).

    Article  CAS  Google Scholar 

  13. Tomaselli, K. J. et al. Expression of beta 1 integrins in sensory neurons of the dorsal root ganglion and their functions in neurite outgrowth on two laminin isoforms. J. Neurosci. 13, 4880–4888 (1993).

    Article  CAS  Google Scholar 

  14. Venstrom, K. & Reichardt, L. Beta 8 integrins mediate interactions of chick sensory neurons with laminin-1, collagen IV, and fibronectin. Mol. Biol. Cell 6, 419–431 (1995).

    Article  CAS  Google Scholar 

  15. Weaver, C. D., Yoshida, C. K., de Curtis, I. & Reichardt, L. F. Expression and in vitro function of beta 1-integrin laminin receptors in the developing avian ciliary ganglion. J. Neurosci. 15, 5275–5285 (1995).

    Article  CAS  Google Scholar 

  16. Bretscher, M. S. Circulating integrins: alpha 5 beta 1, alpha 6 beta 4 and Mac-1, but not alpha 3 beta 1, alpha 4 beta 1 or LFA-1. EMBO J. 11, 405–410 (1992).

    Article  CAS  Google Scholar 

  17. Lawson, M. A. & Maxfield, F. R. Ca2+- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 376, 75–79 (1995).

    Article  ADS  Google Scholar 

  18. Regen, C. M. & Horwitz, A. F. Dynamics of beta 1 integrin-mediated adhesive contacts in motile fibroblasts. J. Cell Biol. 119, 1347–1359 (1992).

    Article  CAS  Google Scholar 

  19. Gaietta, G., Redelmeier, T. E., Jackson, M. R., Tamura, R. N. & Quaranta, V. Quantitative measurement of alpha 6 beta 1 and alpha 6 beta 4 integrin internalization under cross-linking conditions: a possible role for alpha 6 cytoplasmic domains. J. Cell Sci. 107, 3339–3349 (1994).

    CAS  PubMed  Google Scholar 

  20. Sibley, D. R., Benovic, J. L., Caron, M. G. & Lefkowitz, R. J. Regulation of transmembrane signaling by receptor phosphorylation. Cell 48, 913–922 (1987).

    Article  CAS  Google Scholar 

  21. Damsky, C. H. & Werb, Z. Signal transduction by integrin receptors for extracellular matrix: Cooperative processing of extracellular information. Curr. Opin. Cell Biol. 4, 772–781 (1992).

    Article  CAS  Google Scholar 

  22. Sastry, S. K. & Horwitz, A. F. Adhesion-growth factor interactions during differentiation: An integrated biological response. Dev. Biol. 180, 455–467 (1996).

    Article  CAS  Google Scholar 

  23. Dai, J. & Sheetz, M. P. Axon membrane flows from the growth cone to the cell body. Cell 83, 693–701 (1995).

    Article  CAS  Google Scholar 

  24. Craig, A. M., Wyborski, R. J. & Banker, G. Preferential addition of newly synthesized membrane protein at axonal growth cones. Nature 375, 592–594 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Bretscher, M. S. Moving membrane up to the front of migrating cells. Cell 85, 465–467 (1996).

    Article  CAS  Google Scholar 

  26. Gomez, T. M. & Letourneau, P. C. Filopodia initiate choices made by sensory neuron growth cones at laminin/fibronectin borders in vitro. J. Neurosci. 14, 5959–5972 (1994).

    Article  CAS  Google Scholar 

  27. de Curtis, I., Quaranta, V., Tamura, R. N. & Reichardt, L. F. Laminin receptors in the retina: sequence analysis of the chick integrin alpha 6 subunit. Evidence for transcriptional and posttranslational regulation. J. Cell Biol. 113, 405–416 (1991).

    Article  CAS  Google Scholar 

  28. Vekeman, S., Jaspers, M. & Cassiman, J. J. Inhibition of the degradation of the precursor and of the mature beta 1 integrin subunit by different protein synthesis inhibitors and by ATP depletion. FEBS Lett. 327, 207–212 (1993).

    Article  CAS  Google Scholar 

  29. Hotchin, N. A., Gandarillas, A. & Watt, F. M. Regulation of cell surface beta 1 integrin levels during keratinocyte terminal differentiation. J. Cell Biol. 128, 1209–1219 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. F. Reichardt for integrin antibodies and cDNA, and H. J. Yost and J. F. Challocombe for suggestions on the manuscript. This work was supported by grants from the NIH and the Minnesota Medical Foundation to P.C.L. and the Spinal Cord Research Foundation to M.L.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Condic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Condic, M., Letourneau, P. Ligand-induced changes in integrin expression regulate neuronal adhesion and neurite outgrowth. Nature 389, 852–856 (1997). https://doi.org/10.1038/39878

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/39878

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing