Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

De novo reconstitution of a functional mammalian urinary bladder by tissue engineering

Abstract

Human organ replacement is limited by a donor shortage, problems with tissue compatibility, and rejection. Creation of an organ with autologous tissue would be advantageous. In this study, transplantable urinary bladder neo–organs were reproducibly created in vitro from urothelial and smooth muscle cells grown in culture from canine native bladder biopsies and seeded onto preformed bladder–shaped polymers. The native bladders were subsequently excised from canine donors and replaced with the tissue–engineered neo–organs. In functional evaluations for up to 11 months, the bladder neo–organs demonstrated a normal capacity to retain urine, normal elastic properties, and histologic architecture. This study demonstrates, for the first time, that successful reconstitution of an autonomous hollow organ is possible using tissue–engineering methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surgical technique for cystectomy and preparation of implants.
Figure 2: Performance of bladder implants.
Figure 3: Radiographic cystograms 11 months after subtotal cystectomy.
Figure 4: Gross aspects of subtotal cystectomy control (A and B), polymer–only implant (C and D), and tissue–engineered neo–organ (E and F) retrieved after 11 months.
Figure 5: Histological and immunochemical analysis of implants 6 months after surgery.

Similar content being viewed by others

References

  1. Atala, A. 1997. Tissue engineering in the genitourinary system, pp. 149–164, in Tissue engineering, Atala, A., Mooney, D. (eds.). Birkhauser Press, Boston, MA.

    Google Scholar 

  2. Atala, A., Retik, A. 1994. Pediatric urology– future perspectives, pp. 507–524, in Clinical urology, Krane, R.J., Siroky, M.B., Fitzpatrick J.M. (eds). J.B. Lippincott, Philadelphia, PA.

    Google Scholar 

  3. Atala, A., Vacanti, J.P., Peters, C.A., Mandell, J., Retik, A.B., and Freeman, M.R. 1992. Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro. J. Urol. 148:658– 662.

    Article  CAS  Google Scholar 

  4. Atala, A., Freeman, M.R., Vacanti, J.P., Shepard, J., and Retik, A.B. 1993. Implantation in vivo and retrieval of artificial structures consisting of rabbit and human urothelium and human bladder muscle. J. Urol. 150: 608–612.

    Article  CAS  Google Scholar 

  5. Cilento, B.G., Freeman, M.R., Schneck, F.X., Retik, A.B., and Atala, A. 1994. Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro. J. Urol. 152:655–670.

    Article  Google Scholar 

  6. McDougal, W.S. 1992. Metabolic complications of urinary intestinal diversion. J. Urol. 147:1199– 1208.

    Article  CAS  Google Scholar 

  7. Cartwright, P.C. and Snow, B.W. 1989. Bladder autoaugmentation: partial detrusor excision to augment the bladder without use of bowel. J. Urol. 142:1050– 1053.

    Article  CAS  Google Scholar 

  8. Bellinger, M.F. 1993. Ureterocystoplasty: a unique method for vesical augmentation in children. J. Urol. 149:811 –813.

    Article  CAS  Google Scholar 

  9. Lailas, N.G., Cilento, B., and Atala, A. 1996. Progressive ureteral dilation for subsequent ureterocystoplasty. J. Urol. 156: 1151–1153.

    Article  CAS  Google Scholar 

  10. Salle, J., Fraga, C., Lucib, A., Lampertz, M., Jobim, G., and Putten. A. 1990. Seromuscular enterocystoplasty in dogs. J. Urol. 144 :454–456.

    Article  CAS  Google Scholar 

  11. Dewan, P.A. and Stefanek, W. 1994. Autoaugmentation gastrocystoplasty: early clinical results. Br. J. Urol. 74:460–464.

    Article  CAS  Google Scholar 

  12. Gonzalez, R., Buson, H., Reid, C., and Reinberg, Y. 1995 . Seromuscular colocystoplasty lined with urothelium (SCLU). Experimental in 16 patients. Urology. 45:124– 129.

    Article  CAS  Google Scholar 

  13. Atala, A. 1995. Commentary on the replacement of urologic associated mucosa. J. Urol. 156:338–339.

    Article  Google Scholar 

  14. Atala, A. 1998. Autologous cell transplantation for urologic reconstruction. J. Urol. 159:2–3.

    Article  CAS  Google Scholar 

  15. Neuhof, H. 1917. Fascial transplantation into visceral defects: an experimental and clinical study. Surg. Gynecol. and Obst. 25:383–387.

    Google Scholar 

  16. Tsuji, I., Ishida, H., and Fujieda, J. 1961. Experimental cystoplasty using preserved bladder graft. J. Urol. 85: 42–44.

    Article  CAS  Google Scholar 

  17. Probst, M., Dahiya, R., Carrier, S., and Tanagho, E.A. 1997 . Reproduction of funtional smooth muscle tissue and partial bladder replacement. Br. J. Urol. 79:505– 515.

    Article  CAS  Google Scholar 

  18. Kelami, A., Ludtke–Handjery, A., Korb, G., Roll, J., Schnell, J., and Danigel, K.H. 1970. Alloplastic replacement of the urinary bladder wall with lyophilized human dura. Eur. Surg. Res. 2:195–202.

    Article  CAS  Google Scholar 

  19. Cheng, E., Rento, R., Grayhack, T.J., Oyasu, R., and McVary, K.T. 1994. Reversed seromuscular flaps in the urinary tract in dogs. J. Urol. 152:2252–2257.

    Article  CAS  Google Scholar 

  20. Kropp, B.P., Sawyer, B.D., Shannon, H.E., Rippy, M.K., Badylak, S.F., Adams, M.C. et al. 1996. Characterization of small intestinal submucosa regenerated canine detrusor: assessment of reinnervation, in vitro compliance and contractility. J. Urol. 156 :599–607.

    Article  CAS  Google Scholar 

  21. Gleeson, M.J. and Griffith, D.P. 1992. The use of alloplastic biomaterials in bladder substitution. J. Urol. 148:1377–1382.

    Article  CAS  Google Scholar 

  22. Kudish, H.G. 1957. The use of polyvinyl sponge for experimental cystoplasty. J. Urol. 78:232–235.

    Article  CAS  Google Scholar 

  23. Bona, A.V. and De Gresti, A. 1966. Partial substitution of urinary bladder with teflon prothesis. Minerva. Urology. 18:43–47.

    Google Scholar 

  24. Monsour, M.J., Mohammed, R., Gorham, S.D., French, D.A., and Scott, R. 1987. An assessment of a collagen/vicryl composite memebrane to repair defects of the urinary bladder in rabbits. Urol. Res. 15:235– 238.

    Article  CAS  Google Scholar 

  25. Tsuji, I., Kuroda, K., Fujieda, J., Shiraishi, Y., Kunishima, K., and Orikasa, S. 1967. Clinical experience of bladder reconstruction using preserved bladder and gelatin sponge in the case of bladder cancer. J. Urol. 98:91–92.

    Article  CAS  Google Scholar 

  26. Fujita, K. 1978. The use of resin–sprayed thin paper for urinary bladder regeneration. Invest. Urology. 15: 355–357.

    CAS  Google Scholar 

  27. Rohrmann, D., Albrecht, D., Hannappel, J., Gerlach, R., Schwarzkopp, G., and Lutzeyer, W. 1996. Alloplastic replacement of the urinary bladder. J. Urol. 156:2094– 2097.

    Article  CAS  Google Scholar 

  28. de Boer, W.I., Schuller, A.G., Vermay, M., and van der Kwast, T.H. 1994. Expression of growth factors and receptors during specific phases in regenerating urothelium after acute injury in vivo. Am. J. Path. 145:1199–1207.

    CAS  PubMed  Google Scholar 

  29. Baker, R., Kelly, T., Tehan, T., Putman, C., and Beaugard, E. 1958. Subtotal cystectomy and total bladder regeneration in treatment of bladder cancer. JAMA 168:1178–1185.

    Article  CAS  Google Scholar 

  30. Gorham, S.D., French, D.A., Shivas, A.A., and Scott, R. 1989. Some observations on the regeneration of smooth muscle in the repaired urinary bladder of the rabbit. Eur. Urol. 16:440–443.

    Article  CAS  Google Scholar 

  31. Tobin, M.S., Freeman, M.R., and Atala, A. 1994. Maturational response of normal human urothelial cells in culture is dependent on extracellular matrix and serum additives. Surgical Forum 45:786 –789.

    Google Scholar 

  32. Freeman, M.R., Yoo, J.J., Raab, G., Soker, S., Adam, R.M., Schneck, F.X. et al. 1997. Heparin–binding EGF–like growth factor is an autocrine factor for human urothelial cells and is synthesized by epithelial and smooth muscle cells in the human bladder. J. Clin. Invest. 99: 1028–1035.

    Article  CAS  Google Scholar 

  33. Yoo, J.J., Meng, J., Oberpenning, F., and Atala, A. 1998. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 51:221– 225.

    Article  CAS  Google Scholar 

  34. Yoo, J.J. and Atala, A. 1997. A novel gene delivery system using urothelial tissue engineered neo–organs. J. Urol. 158:1066–1070 .

    Article  CAS  Google Scholar 

  35. Wu, X.R., Lin, J.H., Walz, T., Haener, M., Yu, J., Aebi, U. et al. 1994. Mammalian uroplakins. A group of highly conserved urothelial differentiation–related membrane proteins. J. Biol. Chem. 269:13716 –13724.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the National Institutes of Health grant RO1 DK 49484, American Medical Systems (Minnetonka, MN), and the German Research Community educational grant Ob 119/1–1. The authors wish to thank Alan B. Retik, Lothar Hertle, and Stephan Roth for their support and Richard Kershen and Kathryn Mehegan for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Atala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberpenning, F., Meng, J., Yoo, J. et al. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 17, 149–155 (1999). https://doi.org/10.1038/6146

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing