Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase

Abstract

Prostate cancer progresses from a hormone-sensitive, androgen-dependent stage to a hormone-refractory, androgen-independent tumor. The androgen receptor pathway functions in these androgen-independent tumors despite anti-androgen therapy. In our LAPC-4 prostate cancer model, androgen-independent sublines expressed higher levels of the HER-2/neu receptor tyrosine kinase than their androgen-dependent counterparts. Forced overexpression of HER-2/neu in androgen-dependent prostate cancer cells allowed ligand-independent growth. HER-2/neu activated the androgen receptor pathway in the absence of ligand and synergized with low levels of androgen to 'superactivate' the pathway. By modulating the response to low doses of androgen, a tyrosine kinase receptor can restore androgen receptor function to prostate cancer cells, a finding directly related to the clinical progression of prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of HER-2/neu in androgen-dependent and androgen-independent sublines of human prostate cancer xenografts.
Figure 2: Effect of HER-2/neu on growth of androgen-dependent prostate cancer cells in vitro in the absence of androgen.
Figure 3: Effect of HER-2/neu overexpression on tumorigenicity of prostate cancer cells in intact and castrated male SCID mice.
Figure 4: Effect of HER-2/neu on levels of the androgen-regulated PSA protein.
Figure 5: Effects of HER-2/neu on androgen-dependent PSA transcription.
Figure 6: Effects of HER-2/neu on androgen receptor function.

Similar content being viewed by others

References

  1. Talpin, M.E. et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med. 332, 1393 –1398 (1995).

    Article  Google Scholar 

  2. Gaddipati, J.P. et al. Frequent detection of codon 877 mutation in the androgen receptor gene in advanced prostate cancers. Cancer Res. 54, 2861–2864 (1994).

    CAS  PubMed  Google Scholar 

  3. Visakorpi, T. et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nature Genet. 9, 401–406 (1995).

    Article  CAS  Google Scholar 

  4. Veldscholte, J. et al. The androgen receptor in LNCaP cells contains a mutation in the ligand binding domain which affects steroid binding characteristics and response to antiandrogens. J. Steroid Biochem. Mol. Biol. 41, 665–669 (1992).

    Article  CAS  Google Scholar 

  5. Ignar-Trowbridge, D.M. et al. Coupling of dual signaling pathways: epidermal growth factor action involves the estrogen receptor. Proc. Natl. Acad. Sci. USA 89, 4658–4662 ( 1992).

    Article  CAS  Google Scholar 

  6. Power, R.F., Mani, S.K., Codina, J., Conneely, O.M. & O'Malley, B.W. Dopaminergic and ligand-independent activation of steroid hormone receptors. Science 254, 1636–1639 (1991).

    Article  CAS  Google Scholar 

  7. Aronica, S.M. & Katzenellenbogen, B.S. Stimulation of estrogen receptor-mediated transcription and alteration in the phosphorylation state of the rat uterine estrogen receptor by estrogen, cyclic adenosine monophosphate, and insulin-like growth factor-I. Mol. Endocrinol. 7, 743–752 (1993).

    CAS  PubMed  Google Scholar 

  8. Denner, L.A., Weigel, N.L., Maxwell, B.L., Schrader, W.T., & O'Malley, B.W. Regulation of progesterone receptor-mediated transcription by phosphorylation. Science 250, 1740–1743 (1990).

    Article  CAS  Google Scholar 

  9. Kato, S. et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270, 1491–1494 (1995).

    Article  CAS  Google Scholar 

  10. Culig, Z. et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epiderman growth factor. Cancer Res. 54, 5474– 5478 (1994).

    CAS  PubMed  Google Scholar 

  11. Slamon, D.J. et al. Studies of the Her-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707– 712 (1989).

    Article  CAS  Google Scholar 

  12. Adnane, J. et al. Proto-oncogene amplification and human breast tumor phenotype. Oncogene 4, 1389–1395 (1989).

    CAS  PubMed  Google Scholar 

  13. Zeillinger, R. et al. HER-2 amplification, steroid receptors and epidermal growth factor receptor in primary breast cancer. Oncogene 4, 109–114 (1989).

    CAS  PubMed  Google Scholar 

  14. Borg, A. et al. ERBB2 amplification is associated with tamoxifen resistance in steroid-receptor positive breast cancer. Cancer Lett. 81, 137–144 (1994).

    Article  CAS  Google Scholar 

  15. Leitzel, K. et al. Elevated serum c-erbB-2 antigen levels and decreased response to hormone therapy of breast cancer. J. Clin. Oncol. 13, 1129–1135 (1995).

    Article  CAS  Google Scholar 

  16. Pietras, R.J. et al. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10, 2435–2446 ( 1995).

    CAS  Google Scholar 

  17. Ware, J.L., Maygarden, S.J., Koontz, W.W. Jr. & Strom, S.C. Immunohistochemical detection of c-erbB-2 protein in human benign and neoplastic prostate. Hum. Pathol. 22, 254–258 (1991).

    Article  CAS  Google Scholar 

  18. Robinson, D., He, F., Preglow, T. & Kung, H.J. A tyrosine kinase profile of prostate carcinoma. Proc. Natl. Acad. Sci. USA 93, 5958–5962 (1996).

    Article  CAS  Google Scholar 

  19. Lyne, J.C. et al. Tissue expression of neu differentiation factor/heregulin and its receptor complex in prostate cancer and its biological effects on prostate cancer cells in vitro. Cancer J. Sci. Am. 3, 21–30 (1997).

    CAS  Google Scholar 

  20. Mellon, K. et al. p53, c-erbB-2 and the epidermal growth factor receptor in the benign and malignant prostate. J. Urol. 147, 496–499 (1992).

    Article  CAS  Google Scholar 

  21. Kuhn, E.J., Kurnot, R.A., Sesterhenn, I.A., Chang, E.H. & Moul, J.W. Expression of the c-erb-B-2 (HER-2/neu) oncoprotein in human prostatic carcinoma. J. Urol. 150, 1427–1433 (1993).

    Article  CAS  Google Scholar 

  22. Sadasivan, R. et al. Overexpression of HER-2/Neu may be an indicator of poor prognosis in prostate cancer. J. Urol. 150, 126– 131 (1993).

    Article  CAS  Google Scholar 

  23. Ross, J.S. et al. Prognostic significance of HER-2/neu gene amplification status by fluorescence in situ hybridization of prostate carcinoma. Cancer 79, 2162–2170 ( 1997).

    Article  CAS  Google Scholar 

  24. Arai, Y., Tatsuhiro, T. & Yoshida, O. c-erbB-2 oncoprotein: a potential biomarker of advanced prostate cancer. Prostate 30, 195– 201 (1997).

    Article  CAS  Google Scholar 

  25. Klein, K.A. et al. Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nature Med. 3, 402–408 (1997).

    Article  CAS  Google Scholar 

  26. Romijn, J.C., Verkoelen, C.F. & Schroeder, F.H. Application of the MTT assay to human prostate cancer cell lines in vitro: establishment of test conditions and assessment of hormone-stimulated growth and drug-induced cytostatic and cytotoxic effects. Prostate 12, 99–110 (1988).

    Article  CAS  Google Scholar 

  27. Nagabhushan, M. et al. CWR22: the first human prostate cancer xenograft with strongly androgen-dependent and relapsed strains both in vivo and in soft agar. Cancer Res. 56, 3042–3046 (1996).

    CAS  PubMed  Google Scholar 

  28. Kyprianou, N., English, HF. & Isaacs, JT. Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation. Cancer Res. 50, 3748–3753 (1990).

    CAS  PubMed  Google Scholar 

  29. Wolf, D.A., Schulz, P. & Fittler, F. Transcriptional regulation of prostate kallikrein-like genes by androgen. Mol. Endocrinol. 6, 753 –762 (1992).

    CAS  PubMed  Google Scholar 

  30. Cleutjens, K.B.J.M. et al. An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter. Mol. Endocrinol. 11, 148 –161 (1997).

    Article  CAS  Google Scholar 

  31. Schurr, E.R. et al. Prostate-specific antigen expression is regulated by an upstream enhancer. J. Biol. Chem. 271, 7043– 7051 (1996).

    Article  Google Scholar 

  32. Pang, S. et al. Identification of a positive regulatory element responsible for tissue-specific expression of prostate-specific antigen. Cancer Res. 57, 495–499 ( 1997).

    CAS  PubMed  Google Scholar 

  33. Wang, E.H., Zou, S. & Tjian, R. TAFII250-dependent transcription of cyclin A is directed by ATF activator proteins. Genes Dev. 11, 2658– 2669 (1997).

    Article  CAS  Google Scholar 

  34. Riegman, P.H.J., Vlietstra, R.J., van der Korput, J.A.G.M., Brinkmann, A.O. & Trapman, J. The promoter of the prostate-specific antigen gene contains a functional androgen responsive element. Mol. Endocrinol. 5, 1921– 1930 (1991).

    Article  CAS  Google Scholar 

  35. Chan, J.M. et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279, 563– 566 (1998).

    Article  CAS  Google Scholar 

  36. Burfeind, P., Chernicky, C.L., Rininsland, F. & Ilan, J. Antisense RNA to the type I insulin-like growth factor receptor suppresses tumor growth and prevents invasion by rat prostate cancer cell in vivo . Proc. Natl. Acad. Sci. USA 93, 7263 –7268 (1996).

    Article  CAS  Google Scholar 

  37. Ben-Levy, R., Paterson, H.F., Marshall, C.J. & Yarden, Y. A single autophosphorylation site confers oncogenicity to the Neu/ErbB-2 receptor and enables coupling to the MAP kinase pathway. EMBO J. 13, 3302–3311 (1994).

    Article  CAS  Google Scholar 

  38. Bunone, G., Briand, P.-A., Miksicek, R.J. & Picard, D. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J. 15, 2174–2183 (1996).

    Article  CAS  Google Scholar 

  39. Janknecht, R. & Hunter, T. A growing coactivator network. Nature 383, 22–23 ( 1996).

    Article  CAS  Google Scholar 

  40. Glass, C.K., Rose, D.W. & Rosenfeld, M.G. Nuclear receptor coactivators. Curr. Opin. Cell. Biol. 9, 222–232 ( 1997).

    Article  CAS  Google Scholar 

  41. Cobleigh, M.A. et al. Efficacy and safety of HerceptinTM (humanized anti-HER2 antibody) as a single agent in 222 women with HER2 overexpression who relapsed following chemotherapy for metastatic breast cancer. Progr/Proc. Am. Soc. Clin. Oncol. 17, 97a (1998).

    Google Scholar 

  42. Slamon, D. et al. Addition of Herceptin (humanized anti-HER2 antibody) to first line chemotherapy for HER2 overexpressing metastatic breast cancer (HER2+/MBC) markedly increases anticancer activity: a randomized, multinational controlled phase III trial. Progr/Proc. Am. Soc. Clin. Oncol. 17, 98a (1998).

    Google Scholar 

  43. Chazin, V.R., Kaleko, M., Miller, A.D. & Slamon, D.J. Transformation mediated by the human HER-2 gene independent of the epidermal growth factor receptor. Oncogene 7, 1859– 1866 (1992).

    CAS  PubMed  Google Scholar 

  44. Emami, K.H. & Carey, M. A synergistic increase in potency of a multimerized VP16 transcriptional activation domain. EMBO J. 11, 5005–5012 ( 1992).

    Article  CAS  Google Scholar 

  45. Raitano, A.B., Halpern, J.R., Hambuch, T.M. & Sawyers, C.L. The Bcr-Abl leukemia oncogene activates Jun Kinase and requires Jun for transformation. Proc. Natl. Acad. Sci. USA 92, 11746– 50 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Redula and C. Tran for assistance with animal experiments, A. Raitano for advice during the early phases of this work, D. Slamon and A. Belldegrun for reagents and D. Reese for discussions. This work was supported by grants from CaP CURE, the Margaret Early Trust and the James S. McDonnell Foundation and NIH #GM08042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles L. Sawyers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craft, N., Shostak, Y., Carey, M. et al. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 5, 280–285 (1999). https://doi.org/10.1038/6495

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6495

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing