Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NMDA receptor-mediated control of protein synthesis at developing synapses

Abstract

We demonstrate a rapid and complex effect of N-methyl-d-aspartate receptor (NMDAR) activation on synaptic protein synthesis in the superior colliculi of young rats. Within minutes of receptor activation, translation of alpha Ca2+/calmodulin dependent kinase II (αCamK II) was increased, whereas total protein synthesis was reduced. NMDAR activation also increased phosphorylation of eukaryotic elongation factor 2 (eEF2), a process known to inhibit protein translation by reducing peptide chain elongation. Low doses of cycloheximide, which reduce elongation rate independently of eEF2 phosphorylation, decreased overall protein synthesis but increased αCaMK II synthesis. These observations suggest that regulation of peptide elongation via eEF2 phosphorylation can link NMDAR activation to local increases in the synthesis of specific proteins during activity-dependent synaptic change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NMDAR activation dynamically regulates protein synthesis in synaptic preparations.
Figure 2: Alpha CaMK II synthesis is increased by NMDAR activation.
Figure 3: Inhibition of synaptic translation elongation.

Similar content being viewed by others

References

  1. Martin, K. C. et al. Synapse-specific, long-term facilitation of Aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 91, 927–938 (1997).

    Article  CAS  Google Scholar 

  2. Kang, H. & Schuman, E. M. A requirement for local protein synthesis in neurotrophin-induced hippocampal plasticity. Science 273, 1402–1406 (1996).

    Article  CAS  Google Scholar 

  3. Constantine-Paton, M., Cline, H. T. & Debski, E. A. Patterned activity, synaptic convergence and the NMDA receptor in developing visual pathways. Annu. Rev. Neurosci. 13, 129–154 (1990).

    Article  CAS  Google Scholar 

  4. Steward, O. & Falk, P. M. Protein-synthetic machinery at postsynaptic sites during synaptogenesis: a quantitative study of the association between polyribosomes and developing synapses. J. Neurosci. 6, 412–423 (1986).

    Article  CAS  Google Scholar 

  5. Steward, O. & Falk, P. M. Selective localization of polyribosomes beneath developing synapses: a quantitative analysis of the relationships between polyribosomes and developing synapses in the hippocampus and dentate gyrus. J. Comp. Neurol. 314, 545–557 (1991).

    Article  CAS  Google Scholar 

  6. Scheetz, A. J., Nairn, A. C. & Constantine-Paton, M. N-methyl-d-aspartate receptor activation and visual activity induce elongation factor-2 phosphorylation in amphibia tecta: a role for N-methyl-d-aspartate receptors in controlling protein synthesis. Proc. Natl. Acad. Sci. USA 94, 14770–14775 (1997).

    Article  CAS  Google Scholar 

  7. Simon, D. K., Prusky, G. T., O'Leary, D. D. M. & Constantine-Paton, M. NMDA receptor antagonists disrupt the formation of a mammalian neural map Proc. Natl. Acad. Sci. USA 89, 10593–10597 (1992).

    Article  CAS  Google Scholar 

  8. Scheetz, A. J., Prusky, G. T. & Constantine-Paton, M. Chronic NMDA receptor blockade during retinotopic map formation decreases the CaM kinase II differentiation in rat superior colliculus. Eur. J. Neurosci. 8, 1322–1328 (1996).

    Article  CAS  Google Scholar 

  9. Kelly, P. T. Calmodulin-dependent protein kinase II. Multifunctional roles in neuronal differentiation and synaptic plasticity. Mol. Neurobiol. 5, 153–177 (1991).

    Article  CAS  Google Scholar 

  10. Nairn, A. C. & Palfrey, H. C. Identification of the major Mr 100,000 substrate for calmodulin-dependent protein kinase III in mammalian cells as elongation factor-2. J. Biol. Chem. 262, 17299–17303 (1987).

    CAS  PubMed  Google Scholar 

  11. Nairn, A. C. & Palfrey, H. C. in Translational Control (eds. Hershey, J. W. B., Mathews, M. B. & Sonenberg, N.) 295–318 (Cold Spring Harbor Press, Plainview, New York, 1996).

    Google Scholar 

  12. Redpath, N. T. & Proud, C. G. The tumour promoter okadaic acid inhibits reticulocyte-lysate protein synthesis by increasing the net phosphorylation of elongation factor 2. Biochem. J. 262, 69–75 (1989).

    Article  CAS  Google Scholar 

  13. Ryazanov, A. G., Shestakova, E. A. & Natapov, P. G. Phosphorylation of elongation factor 2 by EF-2 kinase affects rate of translation. Nature 334, 170–173 (1988).

    Article  CAS  Google Scholar 

  14. Hollingsworth, E. B. et al. Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclic adenosine 3′:5′-monophosphate-generating systems, receptors and enzymes. J. Neurosci. 5, 2240–2253 (1985).

    Article  CAS  Google Scholar 

  15. Lund, R. & Lund, J. Development of synaptic patterns in the superior colliculus of the rat. Brain Res. 42, 1–20 (1972).

    Article  CAS  Google Scholar 

  16. Scheetz, A. J. & Constantine-Paton, M. NMDA receptor activation-responsive phosphoproteins in the developing tectum. J. Neurosci. 15, 1460–1469 (1996).

    Article  Google Scholar 

  17. Burgin, K. E. et al. In situ hybridization histochemistry of Ca++/calmodulin-dependent protein kinase II in developing brain. J. Neurosci 10, 1788–1798 (1990).

    Article  CAS  Google Scholar 

  18. Brocke, L., Srinivasan, M. & Schulman, H. Developmental and regional expression of multifunctional Ca2+/calmodulin-dependent protein kinase in rat brain. J. Neurosci 15, 6797–6808 (1995).

    Article  CAS  Google Scholar 

  19. Simon, D. K. & O'Leary, D. D. M. Limited topographic specificity in the targeting and branching of mammalian retinal axons. Dev. Biol. 137, 125–134 (1990).

    Article  CAS  Google Scholar 

  20. Simon, D. K. & O'Leary, D. D. M. Development of topographic order in the mammalian retinocollicular projection. J. Neurosci 12, 1212–1232 (1992).

    Article  CAS  Google Scholar 

  21. Shi, J., Aamodt, S. M. & Constantine-Paton, M. Temporal correlations between functional and molecular changes in NMDA receptors and GABA neurotransmission in the superior colliculus. J. Neurosci. 17, 6264–6276 (1997).

    Article  CAS  Google Scholar 

  22. Shen, K. & Meyer, T. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284, 162–166 (1999).

    Article  CAS  Google Scholar 

  23. Strack, S. & Colbran, R. J. Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl-D-aspartate receptor. J. Biol. Chem 273, 20689–20692 (1998).

    Article  CAS  Google Scholar 

  24. Leonard, A. S., Lim, I. A., Hemsworth, D. E., Horne, M. C. & Hell, J. W. Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-d-aspartate receptor Proc. Natl. Acad. Sci. USA 96, 3239–3244 (1999).

    Article  CAS  Google Scholar 

  25. Brendler, T., Godefroy-Colburn, T., Carhill, R. D. & Thach, R. E. The role of mRNA competition in regulating translation II. Development of a quantitative in vitro assay. J. Biol. Chem. 256, 11747–11754 (1981).

    CAS  PubMed  Google Scholar 

  26. Brendler, T., Godefroy-Colburn, T., Yu, S. & Thach, R. E. The role of mRNA competition in regulating translation III. Comparison of in vitro and in vivo results. J. Biol. Chem. 256, 11755–11761 (1981).

    CAS  PubMed  Google Scholar 

  27. Godefroy-Colburn, T. & Thach, R. E. The role of mRNA competition in regulating translation IV. Kinetic model. J. Biol. Chem. 256, 11762–11773 (1981).

    CAS  PubMed  Google Scholar 

  28. Walden, W. E., Godefroy-Colburn, T. & Thach, R. E. The role of mRNA competition in regulating translation I. Demonstration of competition in vivo. J. Biol. Chem. 256, 11739–11746 (1981).

    CAS  PubMed  Google Scholar 

  29. Walden, W. E. & Thach, R. E. Translational control of gene expression in a normal fibroblast. Characterization of a subclass of mRNAs with unusual kinetic properties. Biochemistry 25, 2033–2041 (1986).

    Article  CAS  Google Scholar 

  30. Feig, S. & Lipton, P. Pairing the cholinergic agonist carbacol with patterned schaffer collateral stimulation initiates protein synthesis in hippocampal pyramidal cell dendrites via a muscarinic, NMDA-dependent mechanism. J. Neurosci. 13, 1010–1021 (1993).

    Article  CAS  Google Scholar 

  31. Weiler, I. J. & Greenough, W. T. Metabotropic glutamate receptors trigger postsynaptic protein synthesis. Proc. Natl. Acad. Sci. USA 90, 7168–7171 (1993).

    Article  CAS  Google Scholar 

  32. Crino, P. B. & Eberwine, J. Molecular characterization of the dendritic growth cone: regulated mRNA transport and local protein synthesis. Neuron 17, 1173–1187 (1996).

    Article  CAS  Google Scholar 

  33. Weiler, I. J. et al. Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc. Natl. Acad. Sci. USA 94, 5395–5400 (1997).

    Article  CAS  Google Scholar 

  34. Leski, M. L. & Steward, O. Protein synthesis within dendrites: ionic and neurotransmitter modulation of synthesis of particular polypeptides characterized by gel electrophoresis. Neurochem. Res. 21, 681–690 (1996).

    Article  CAS  Google Scholar 

  35. Ouyang, Y., Rosenstein, A., Kreiman, G., Schuman, E. M. & Kennedy, M. B. Tetanic stimulation leads to increased accumulation of Ca2+/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. J. Neurosci. 19, 7823–7833 (1999).

    Article  CAS  Google Scholar 

  36. Ouyang, Y., Kantor, D., Harris, K. M., Schuman, E. M. & Kennedy, M. B. Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent protein kinase II after tetanic stimulation in the CA1 area of the hippocampus. J. Neurosci. 17, 5416–5427 (1997).

    Article  CAS  Google Scholar 

  37. Steward, O. & Halpain, S. Lamina-specific synaptic activation causes domain-specific alterations in dendritic immunostaining for MAP2 and CAM kinase II. J. Neurosci. 19, 7834–7845 (1999).

    Article  CAS  Google Scholar 

  38. Wu, L. et al. CEPB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of α-CaMKII mRNA at synapses. Neuron 21, 1129–1139 (1998).

    Article  CAS  Google Scholar 

  39. McGrew, L. L. & Richter, J. D. Translational control by cytoplasmic polyadenylation during Xenopus oocyte maturation: characterization of cis and trans elements and regulation by cyclin/MPF. EMBO J. 9, 3743–3751 (1990).

    Article  CAS  Google Scholar 

  40. Baitinger, C., Alderton, J., Poenie, M., Schulman, H. & Steinhardt, R. A. Multifunctional Ca2+/calmodulin-dependent protein kinase is necessary for nuclear envelope breakdown. J. Cell Biol. 111, 1763–1773 (1990).

    Article  CAS  Google Scholar 

  41. Marin, P. et al. Glutamate-dependent phosphorylation of elongation factor-2 and inhibition of protein synthesis in neurons. J. Neurosci. 17, 3445–3454 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by U.S. Public Health Service Grants EY 06039 to M.C.P and GM 50402 to A.C.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Scheetz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheetz, A., Nairn, A. & Constantine-Paton, M. NMDA receptor-mediated control of protein synthesis at developing synapses. Nat Neurosci 3, 211–216 (2000). https://doi.org/10.1038/72915

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72915

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing