Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness

Abstract

Using a candidate gene approach, we identified a novel human gene, OTOF, underlying an autosomal recessive, nonsyndromic prelingual deafness, DFNB9. The same nonsense mutation was detected in four unrelated affected families of Lebanese origin. OTOF is the second member of a mammalian gene family related to Caenorhabditis elegans fer-1. It encodes a predicted cytosolic protein (of 1,230 aa) with three C2 domains and a single carboxy-terminal transmembrane domain. The sequence homologies and predicted structure of otoferlin, the protein encoded by OTOF, suggest its involvement in vesicle membrane fusion. In the inner ear, the expression of the orthologous mouse gene, mainly in the sensory hair cells, indicates that such a role could apply to synaptic vesicles.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic linkage analysis of the DFNB9-affected family AB.
Figure 2: Physical map of the DFNB9 region.
Figure 3: Sequence and structure of human otoferlin.
Figure 4: Sequence analysis of the mutation present in OTOF exon 18 in family F.
Figure 5: RT-PCR analysis of Otof expression in mouse tissues.
Figure 6: In situ hybridization analysis of Otof expression in mouse inner ear.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Petit, C. Genes responsible for human hereditary deafness: symphony of a thousand. Nature Genet. 14, 385–391 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Kelsell, D.P. et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387, 80– 83 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, X.-Z. et al. Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nature Genet. 16, 188– 190 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Weil, D. et al. The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene. Nature Genet. 16, 191–193 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, A. et al. Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 280, 1447–1451 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Li, X.C. et al. A mutation in PDS causes non-syndromic recessive deafness. Nature Genet. 18, 215– 217 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Scott, D.A., Wang, R., Kerman, T.M., Sheffield, V.C. & Karniski, L.P. The Pendred syndrome gene product functions as an iodine, chloride transporter. in Molecular Biology of Hearing and Deafness, (ed. Ryan, A.F.) 63 (UCSD, Bethesda, 1998).

    Google Scholar 

  8. Mustapha, M. et al. An α-tectorin gene defect causes a newly identified autosomal recessive form of sensorineural pre-lingual non-syndromic deafness, DFNB21. Hum. Mol. Genet. 8, 409– 412 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Zelante, L. et al. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum. Mol. Genet. 6, 1605– 1609 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Denoyelle, F. et al. Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum. Mol. Genet. 6, 2173–2177 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Denoyelle, F. et al. Connexin26 gene linked to a dominant deafness. Nature 393, 319–320 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  12. Cohen-Salmon, M., El-Amraoui, A., Leibovici, M. & Petit, C. Otogelin: a glycoprotein specific to the acellular membranes of the inner ear. Proc. Natl Acad. Sci. USA 94, 14450 –14455 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Verpy, E., Leibovici, M. & Petit, C. Characterization of otoconin-95, the major protein of murine otoconia, provides new insights into the formation of these inner ear biominerals. Proc. Natl Acad. Sci. USA 96, 529–534 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chaïb, H. et al. A gene responsible for a sensorineural nonsyndromic recessive deafness maps to chromosome 2p22-23. Hum. Mol. Genet. 5, 155–158 (1996).

    Article  PubMed  Google Scholar 

  15. Kozak, M. Interpreting cDNA sequences: some insights from studies on translation. Mamm. Genome 7, 563–574 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Achanzar, W.E. & Ward, S. A nematode gene required for sperm vesicle fusion. J. Cell Sci. 110, 1073–1081 (1997).

    CAS  PubMed  Google Scholar 

  17. Leal, S.M. et al. A second Middle Eastern kindred with autosomal recessive non-syndromic hearing loss segregates DFNB9. Eur. J. Hum. Genet. 6, 341–344 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, J. et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb-girdle muscular dystrophy. Nature Genet. 20 , 31–36 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Bashir, R. et al. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nature Genet. 20, 37–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Sutton, R.B., Davletov, B.A., Berghuis, A.M., Südhof, T.C. & Sprang, S.R. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell 80, 929–938 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Rizo, J. & Südhof, T.C. C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem. 273, 15879–15882 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Matthew, W.D., Tsavaler, L. & Reichardt, L.F. Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J. Cell Biol. 91, 257–269 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Perin, M.S., Fried, V.A., Mignery, G.A., Jahn, R. & Südhof, T.C. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345, 260–263 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Clark, J.D. et al. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP. Cell 65, 1043– 1051 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Shirataki, H. et al. Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin. Mol. Cell. Biol. 13, 2061–2068 ( 1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, C. et al. Synaptic targeting of rabphilin-3A, a synaptic vesicle Ca2+/phospholipid-binding protein, depends on rab3A/3C. Neuron 13, 885–898 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  27. Brose, N., Hofmann, K., Hata, Y. & Südhof, T.C. Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins. J. Biol. Chem. 270, 25273– 25280 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Verhage, M. et al. DOC2 proteins in rat brain: complementary distribution and proposed function as vesicular adapter proteins in early stages of secretion. Neuron 18, 453–461 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K. & Südhof, T.C. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388, 593– 598 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Shao, X. et al. Synaptotagmin-syntaxin interaction: the C2 domain as a Ca2+-dependent electrostatic switch. Neuron 18 , 133–142 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Safieddine, S. & Wenthold, R.J. Snare complex at the ribbon synapses of cochlear hair cells: analysis of synaptic vesicle- and synaptic membrane-associated proteins. Eur. J. Neurosci. (in press).

  32. Parsons, T.D., Lenzi, D., Almers, W. & Roberts, W.M. Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells. Neuron 13, 875– 883 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Li, C. et al. Ca(2+)-dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375, 594–599 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Südhof, T.C. & Rizo, J. Synaptotagmins: C2-domain proteins that regulate membrane traffic. Neuron 17, 379–388 (1996).

    Article  PubMed  Google Scholar 

  35. Avraham, K.B. Hear come more genes! Nature Med. 4, 1238 –1239 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Kalatzis, V. & Petit, C. The fundamental and medical impacts of recent progress in research on hereditary hearing loss. Hum. Mol. Genet. 7, 1589–1597 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Erkman, L. et al. Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 381, 603–606 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Xiang, M., Gao, W.-Q., Hasson, T. & Shin, J.J. Requirement for Brn-3c in maturation and survival, but not in fate determination of inner hair cells. Development 125, 3935– 3946 (1998).

    CAS  PubMed  Google Scholar 

  39. Vahava, O. et al. Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science 279, 1950–1954 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Spicer, S.S. & Schulte, B.A. Evidence for a medial K+ recycling pathway from the inner hair cells. Hearing Res. 118, 1–12 ( 1998).

    Article  CAS  Google Scholar 

  41. Vetter, D.E. et al. Inner ear defects induced by null mutation of the isk gene. Neuron 17, 1251–1264 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Neyroud, N. et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nature Genet. 15, 186–189 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Schulze-Bahr, E. et al. KCNE1 mutations cause Jervell and Lange-Nielsen syndrome. Nature Genet. 17, 267– 268 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Kubisch, C. et al. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96 , 437–446 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Legan, P.K., Rau, A., Keen, J.N. & Richardson, G.P. The mouse tectorins. Modular matrix proteins of the inner ear homologous to components of the sperm-egg adhesion system. J. Biol. Chem. 272 , 8791–8801 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Verhoeven, K. et al. Mutations in the human α-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Nature Genet. 19, 60–62 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. El-Amraoui, A. et al. Human Usher IB/mouse shaker-1; the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells. Hum. Mol. Genet. 5, 1171– 1178 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Richardson, G.P. et al. Myosin VIIA is required for aminoglycoside accumulation in cochlear hair cells. J. Neurosci. 17, 9506 –9519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schaeren-Wiemers, N. & Gerfin-Moser, A. A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100, 431– 440 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the families for participation; D. Weil for helpful advice; and J.-P. Hardelin and J. Levilliers for critical reading of the manuscript. This work was supported by grants from AFM, Association Entendre (France), Université Saint Joseph (Lebanon) and EEC (BMH4-CT-96). M.G. was supported by DGRST (Tunisia) and AFM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Petit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasunaga, S., Grati, M., Cohen-Salmon, M. et al. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nat Genet 21, 363–369 (1999). https://doi.org/10.1038/7693

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7693

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing