Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Decoding calcium signals involved in cardiac growth and function

Abstract

Calcium is central in the regulation of cardiac contractility, growth and gene expression. Variations in the amplitude, frequency and compartmentalization of calcium signals are decoded by calcium/calmodulin-dependent enzymes, ion channels and transcription factors. Understanding the circuitry for calcium signaling creates opportunities for pharmacological modification of cardiac function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intracellular calcium fluxes in cardiomyocytes.
Figure 2
Figure 3: Control of cardiac gene transcription by calcium/calmodulin-dependent signaling.

Similar content being viewed by others

References

  1. Post, G.R., Hammond, H.K. & Insel, P.A. Beta-adrenergic receptors and receptor signaling in heart failure. Annu. Rev. Pharmacol. Toxicol. 39, 343–360 (1999).

    Article  CAS  Google Scholar 

  2. Sugden, P.H. & Clerk, A. “Stress-responsive” mitogen-activated protein kinases (c-jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ. Res. 83, 345–352 (1998).

    Article  CAS  Google Scholar 

  3. Cheng, H. et al. Excitation-contraction coupling in heart: new insight from Ca2+ sparks. Cell Calcium 20, 129–140 (1996).

    Article  CAS  Google Scholar 

  4. Koss, K.L. & Kranias, E.G. Phospholamban: A prominent regulator of cardiac contractility. Circ. Res. 79, 1059–1063 (1996).

    Article  CAS  Google Scholar 

  5. Gwathmey, J.K. et al. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ. Res. 61, 70–76 (1987).

    Article  CAS  Google Scholar 

  6. Mercadier, J.J. et al. Altered sarcoplasmic reticulum Ca2+ -ATPase gene expression in the human ventricle during end-stage heart failure. J. Clin. Invest. 85, 305–309 (1990).

    Article  CAS  Google Scholar 

  7. Hasenfuss, G. et al. Relationship between Na+-Ca2+-exchanger protein levels and diastolic function of failing human myocardium. Circulation 99, 641–648 (1999).

    Article  CAS  Google Scholar 

  8. Marx, S.O. et al. PKA phoshorylation dissociates FKBP12.6 from the calcium release channel (Ryanodine receptor): Defective regulation in failing hearts. Cell 101, 365–376 (2000).

    Article  CAS  Google Scholar 

  9. Gao, W.D., Perez, N.G., Seidman, C.E., Seidman, J.G. & Marban, E. Altered cardiac excitation-contraction coupling in mutant mice with familial hypertrophic cardiomyopathy. J. Clin. Invest. 103, 661–666 (1999).

    Article  CAS  Google Scholar 

  10. Bottinelli, R. et al. A mutant tropomyosin that causes hypertrophic cardiomyopathy is expressed in vivo and associated with an increased calcium sensitivity. Circ. Res. 82, 106–115 (1998).

    Article  CAS  Google Scholar 

  11. Yanaga, F., Morimoto, S. & Ohtsuki, I. Ca2+ sensitization and potentiation of the maximum level of myofibrillar ATPase activity caused by mutations of troponin T found in familial hypertrophic cardiomyopathy. J. Biol. Chem. 274, 8806–8812 (1999).

    Article  CAS  Google Scholar 

  12. Elliott, K., Watkins, H. & Redwood, C.S. Altered regulatory properties of human cardiac troponin I mutants that cause hypertrophic cardiomyopathy. J. Biol. Chem. 275, 22069–74 (2000).

    Article  CAS  Google Scholar 

  13. Mukherjea, P., Tong, L., Seidman, J.G., Seidman, C.E. & Hitchcock-DeGregori, S.E. Altered regulatory function of two familial hypertrophic cardiomyopathy troponin T mutants. Biochemistry 38, 13296–13301 (1999).

    Article  CAS  Google Scholar 

  14. Gao, W.D. et al. Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circ. Res. 80, 393–399 (1996).

    Article  Google Scholar 

  15. Murphy, A.M. et al. Transgenic mouse model of stunned myocardium. Science 287, 488–491 (2000).

    Article  CAS  Google Scholar 

  16. Chin, D. & Means, A.R. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 10, 322–328 (2000).

    Article  CAS  Google Scholar 

  17. Dolmetsch, R.E., Xu, K. & Lewis, R.S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392, 933–936 (1998).

    Article  CAS  Google Scholar 

  18. Takeshima, H., Komazaki, S., Nishi, M., Iino, M. & Kangawa, K. Junctophilins: a novel family of junctional membrane complex proteins. Mol. Cell 6, 11–22 (2000).

    CAS  Google Scholar 

  19. Hardingham, G.E., Chawla, S., Johnson, C.M. & Bading, H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385, 260–265 (1997).

    Article  CAS  Google Scholar 

  20. Braun, A.P. & Schulman, H. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu. Rev. Physiol. 57, 417–445 (1995).

    Article  CAS  Google Scholar 

  21. Srinivasan, M., Edman, C.F. & Schulman, H. Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus. J. Cell. Biol. 126, 839–852 (1994).

    Article  CAS  Google Scholar 

  22. Lisman, J. The CaM kinase II hypothesis for the storage of synaptic memory. Trends Neurosci. 17, 406–412 (1994).

    Article  CAS  Google Scholar 

  23. Dolmetsch, R.E., Lewis, R.E., Goodnow, C.C. & Healy, J.I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997).

    Article  CAS  Google Scholar 

  24. Timmermann, L.A., Clipstone, N.A., Ho, S.N., Northrop, J.P. & Crabtree, G.R. Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature 383, 837–840 (1996).

    Article  Google Scholar 

  25. Noland, T.A. & Kuo, J.F. Phosphorylation of cardiac myosin light chain 2 by protein kinase C and myosin light chain kinase increases Ca2+-stimulated actomyosin MgATPase activity. Biochem. Biophys. Res. Commun. 193, 254–260 (1993).

    Article  CAS  Google Scholar 

  26. Sweeney, H.L., Bowman, B.F. & Stull, J.T. Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am. J. Physiol. 264, C1085–C1095 (1993).

    Article  CAS  Google Scholar 

  27. Witcher, D.R., Kovacs, R.J., Schulman, H., Cefali, D.C. & Jones, L.R. Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J. Biol. Chem. 266, 11144–11152 (1991).

    CAS  PubMed  Google Scholar 

  28. Xu, A. & Narayanan, N. Reversible inhibition of the calcium-pumping ATPase in native cardiac sarcoplasmic reticulum by a calmodulin-binding peptide. J. Biol. Chem. 275, 4407–4416 (2000).

    Article  CAS  Google Scholar 

  29. Reddy, L.G., Jones, L.R., Pace, R.C. & Stokes, D.L. Purified, reconstituted cardiac Ca2+ ATPase is regulated by phospholamban but not by direct phosphorylation with Ca2+/calmodulin-dependent protein kinase. J. Biol. Chem. 271, 14964–14970 (1996).

    Article  CAS  Google Scholar 

  30. Simmermann, H.K., Collins, J.H., Theibert, J.L., Wegener, A.D. & Jones, L.R. Sequence analysis of phospholamban: identification of phosphorylation sites and two major structural domains. J. Biol. Chem. 261, 13333–13341 (1986).

    Google Scholar 

  31. Dzhura, I., Wu, Y., Colbran, R.J., Balser, J.R. & Anderson, M.E. Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nature Cell Biol. 2, 173–177 (2000).

    Article  CAS  Google Scholar 

  32. Netticadan, T., Temsah, R.M., Kawabata, K. & Dhalla, N.S. Saroplasmic reticulum Ca2+/calmodulin-dependent kinase is altered in heart failure. Circ. Res. 86, 596–605 (2000).

    Article  CAS  Google Scholar 

  33. Kirchhefer, U., Schmitz, W., Scholz, H. & Neumann, J. Activity of cAMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase in failing and non-failing human hearts. Cardiovasc. Res. 42, 254–261 (1999).

    Article  CAS  Google Scholar 

  34. Cameron, A.M. et al. Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell 83, 463–472 (1995).

    Article  CAS  Google Scholar 

  35. Genazzani, A.A., Carafoli, E. & Geurini, D. Calcineurin controls inositol 1,4,5-trisphosphate type 1 receptor expression in neurons. Proc. Natl. Acad. Sci. USA 96, 5797–5801 (1999).

    Article  CAS  Google Scholar 

  36. Moschella, M.C. & Marks, A.R. Inositol 1,4,5-trisphosphate receptor expression in cardiac myocytes. J. Cell Biol. 120, 1137–1146 (1993).

    Article  CAS  Google Scholar 

  37. Hunter, J.J. & Chien, K.R. Signaling pathways for cardiac hypertrophy and failure. N. Engl. J. Med. 341, 1276–1283 (1999).

    Article  CAS  Google Scholar 

  38. McKinsey, T.A. & Olson, E.N. Cardiac hypertrophy: sorting out the circuitry. Curr. Opin. Gen. & Dev. 9, 267–274 (1999).

    Article  CAS  Google Scholar 

  39. Gruver, C.L., DeMayo, F., Goldstein, M.A. & Means, A.R. Targeted developmental overexpression of calmodulin induces proliferative and hypertrophic growth of cardiomyocytes in transgenic mice. Endocrinology 133, 376–388 (1993).

    Article  CAS  Google Scholar 

  40. McDonough, P.M. & Glembotski, C.C. Induction of natriuretic factor and myosin light chain-2 gene expression in cultured ventricular myocytes by electrical stimulation. J. Biol. Chem. 267, 11665–11668 (1992).

    CAS  PubMed  Google Scholar 

  41. Sato, Y. et al. Cardiac-specific overexpression of mouse cardiac calsequestrin is associated with depressed cardiovascular function and hypertrophy in transgenic mice. J. Biol. Chem. 273, 28470–28477 (1998).

    Article  CAS  Google Scholar 

  42. Jones, L.R. et al. Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J. Clin. Invest. 101, 1385–1393 (1998).

    Article  CAS  Google Scholar 

  43. Arber, S. et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88, 393–403 (1997).

    Article  CAS  Google Scholar 

  44. Minamisawa, S. et al. Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 99, 313–322 (1999).

    Article  CAS  Google Scholar 

  45. Miyamoto, M.I. et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc. Natl. Acad. Sci. 97, 793–798 (2000).

    Article  CAS  Google Scholar 

  46. Morano, I., Bachle-Stolz, C., Katus, H.A. & Ruegg, J.C. Increased calcium sensitivity of chemically skinned human atria by myosin light chain kinase. FEBS Lett. 189, 221–224 (1985).

    Article  CAS  Google Scholar 

  47. Sanbe, A. et al. Abnormal cardiac structure and function in mice expressing nonphosphorylatable regulatory myosin light chain 2. J Biol. Chem. 274, 21085–21094 (1999).

    Article  CAS  Google Scholar 

  48. Aoki, H., Sadoshima, J. & Izumo, K.S. Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro. Nature Med. 6, 183–188 (2000).

    Article  CAS  Google Scholar 

  49. Molkentin, J.D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 17, 215–228 (1998).

    Article  Google Scholar 

  50. Zhu, W. et al. Ca2+/calmodulin-dependent kinase II and calcineurin play critical roles in endothelin-1-induced cardiomyocyte hypertrophy. J. Biol. Chem. 275, 15239–15245 (2000).

    Article  CAS  Google Scholar 

  51. Rao, A., Luo, C. & Hogan, P.G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707–747 (1997).

    Article  CAS  Google Scholar 

  52. Black, B.L. & Olson, E.N. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell. Dev. Biol. 14, 167–196 (1998).

    Article  CAS  Google Scholar 

  53. Wu, H. et al. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J. 19, 1963–1973 (2000).

    Article  CAS  Google Scholar 

  54. Mao, Z. & Wiedmann, M. Calcineurin enhances MEF2 DNA binding activity in calcium-dependent survival of cerebellar granule neurons. J. Biol. Chem. 274, 31102–31107 (1999).

    Article  CAS  Google Scholar 

  55. Blaeser, F., Ho, N., Prywes, R. & Chatila, T.A. Ca2+-dependent gene expression mediated by MEF2 transcription factors. J. Biol. Chem. 275, 197–209 (2000).

    Article  CAS  Google Scholar 

  56. Olson, E.N. & Williams, R.S. Calcineurin signaling and muscle remodeling. Cell. 101, 689–692 (2000).

    Article  CAS  Google Scholar 

  57. Sussman, M.A. et al. Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 281, 1690–1693 (1998).

    Article  CAS  Google Scholar 

  58. Shimoyama, M. et al. Calcineurin plays a critical role in pressure overload-induced cardiac hypertrophy. Circulation. 100, 2449–2454 (1999).

    Article  CAS  Google Scholar 

  59. Hill, J.A. et al. Cardiac hypertrophy is not a required compensatory response to short-term pressure overload. Circulation 101, 2863–2869 (2000).

    Article  CAS  Google Scholar 

  60. Zhang, W. et al. Failure of calcineurin inhibitors to prevent pressure-overload left ventricular hypertrophy in rats. Circ. Res. 84, 722–728 (1999).

    Article  CAS  Google Scholar 

  61. Ding, B. et al. Pressure overload induces severe hypertrophy in mice treated with cyclosporin, an inhibitor of calcineurin. Circ. Res. 84, 729–734 (1999).

    Article  CAS  Google Scholar 

  62. Lim, H.W. & Molkentin, J.D. Calcineurin and human heart failure. Nature Med. 5, 246–247 (1999).

    Article  CAS  Google Scholar 

  63. Tsao, L., Neville, C., Musar, A., McCullagh, K.J. & Rosenthal, N. Revisiting calcineurin and human heart failure. Nature Med. 6, 2–3 (2000).

    Article  CAS  Google Scholar 

  64. Janssen, P.M. et al. Influence of cyclosporine A on contractile function, calcium handling, and energetics in isolated human and rabbit myocardium. Cardiovasc. Res. 47, 99–107 (2000).

    Article  CAS  Google Scholar 

  65. Irons, C.E., Sei, C.A., Hidaka, H. & Glembotski, C.C. Protein kinase C and calmodulin kinase are required for endothelin-stimulated atrial natriuretic factor secretion from primary atrial myocytes. J. Biol Chem. 267, 5211–5216 (1992).

    CAS  PubMed  Google Scholar 

  66. Passier, R. et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J. Clin. Invest. 105, 1395–1406 (2000).

    Article  CAS  Google Scholar 

  67. Colomer, J.M. & Means, A.R. Chronic elevation of calmodulin in the ventricles of transgenic mice increases the autonomous activity of calmodulin-dependent protein kinase II, which regulates atrial natriuretic factor gene expression. Mol. Endocrinol. 14, 1125–1136 (2000).

    Article  CAS  Google Scholar 

  68. Lu, J., McKinsey, T.A., Nicol, R.L. & Olson, E.N. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc. Natl. Acad. Sci. USA 97, 4070–4075 (2000).

    Article  CAS  Google Scholar 

  69. Sparrow, D.B. et al. MEF-2 function is modified by a novel co-repressor, MITR. EMBO J. 18, 5085–5098 (1999).

    Article  CAS  Google Scholar 

  70. Kuo, M.H. & Allis, C.D. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20, 615–626 (1998).

    Article  CAS  Google Scholar 

  71. McKinsey, T.A., Zhang, C.L., Lu, J. & Olson, E.N. Regulation of skeletal muscle differentiation by signal-dependent nuclear export of a histone deacetylase. Nature (in the press).

  72. Youn, H.D., Grozinger, C.M. & Liu, J.O. Calcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4. J. Biol. Chem. 275, 22563–22567 (2000).

    Article  CAS  Google Scholar 

  73. Han, J., Jiang, Y., Li, Z., Kravchenko, V.V. & Ulevitch, R.J. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386, 296–299 (1997).

    Article  CAS  Google Scholar 

  74. Kolodziejczyk, S.M. et al. MEF2 is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium. Curr. Biol. 9, 1203–1206 (1999).

    Article  CAS  Google Scholar 

  75. Taigen, T., De Windt, L.J., Lim, H.W. & Mokentin, J.D. Targeted inhibition of calcineurin prevents agonist-induced cardiomyocyte hypertrophy. Proc. Natl. Acad. Sci. 97, 1196–1201 (2000).

    Article  CAS  Google Scholar 

  76. Rothermel, B. et al. A protein encoded within the Down syndrome critical region is enriched in striated muscles and inhibits calcineurin signaling. J. Biol. Chem. 275, 8719–8725 (2000).

    Article  CAS  Google Scholar 

  77. Bristow, M.R. et al. Decreased catecholamine sensitivity and beta-adrenergic receptor density in failing human hearts. N. Engl. J. Med. 307, 205–211 (1982).

    Article  CAS  Google Scholar 

  78. Dorn, G.W. 2nd, Tepe, N.M., Lorenz, J.N., Koch, W.J. & Ligett, S.B. Low- and high-level transgenic expression of beta-adrenergic receptors differentially affect cardiac hypertrophy and function in Galphaq-overexpressing mice. Proc. Natl. Acad. Sci. USA 96, 6400–6405 (1999).

    Article  CAS  Google Scholar 

  79. Rockman, H.A. et al. 1998. Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc. Natl. Acad. Sci. USA 95, 7000–7005 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Tizenor for assistance with graphics and J. Page for editorial assistance. Work in the authors' laboratory was supported by grants from National Institutes of Health, the D.W. Reynolds Foundation, the Robert A. Welch Foundation and Myogen Inc. N.F. was supported by a postdoctoral fellowship from Deutsche Forschungsgemeinschaft and T.A.M. is a Pfizer Fellow of the Life Sciences Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric N. Olson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frey, N., McKinsey, T. & Olson, E. Decoding calcium signals involved in cardiac growth and function. Nat Med 6, 1221–1227 (2000). https://doi.org/10.1038/81321

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/81321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing