Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dyssegmental dysplasia, Silverman-Handmaker type, is caused by functional null mutations of the perlecan gene

Abstract

Perlecan is a large heparan sulfate (HS) proteoglycan present in all basement membranes and in some other tissues such as cartilage1,2, and is implicated in cell growth and differentiation3,4,5. Mice lacking the perlecan gene6,7 (Hspg2) have a severe chondrodysplasia with dyssegmental ossification of the spine and show radiographic, clinical and chondro-osseous morphology similar to a lethal autosomal recessive disorder in humans termed dyssegmental dysplasia, Silverman-Handmaker type (DDSH; MIM 224410). Here we report a homozygous, 89-bp duplication in exon 34 of HSPG2 in a pair of siblings with DDSH born to consanguineous parents, and heterozygous point mutations in the 5′ donor site of intron 52 and in the middle of exon 73 in a third, unrelated patient, causing skipping of the entire exons 52 and 73 of the HSPG2 transcript, respectively. These mutations are predicted to cause a frameshift, resulting in a truncated protein core. The cartilage matrix from these patients stained poorly with antibody specific for perlecan, but there was staining of intracellular inclusion bodies. Biochemically, truncated perlecan was not secreted by the patient fibroblasts, but was degraded to smaller fragments within the cells. Thus, DDSH is caused by a functional null mutation of HSPG2. Our findings demonstrate the critical role of perlecan in cartilage development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radiographic and histologic features of DDSH and the perlecan-null mouse.
Figure 2: Immunostaining of the resting zone of cartilage with a monoclonal antibody to perlecan protein core domain III.
Figure 3: Immunostaining of cultured fibroblasts.
Figure 4: Biochemical analysis of proteoglycans manufactured by cultured fibroblasts.
Figure 5: Mutation analysis.

Similar content being viewed by others

References

  1. Noonan, D.M. et al. The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein-receptor, and the neural cell adhesion molecule. J. Biol. Chem. 266, 22939–22947 (1991).

    CAS  PubMed  Google Scholar 

  2. SundarRaj, N., Fite, D., Ledbetter, S., Chakravarti, S. & Hassell, J.R. Perlecan is a component of cartilage matrix and promotes chondrocyte attachment. J. Cell Sci. 108, 2663–2672 (1995).

    CAS  PubMed  Google Scholar 

  3. Aviezer, D. et al. Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 79, 1005–1013 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Iozzo, R.V., Cohen, I.R., Grassel, S. & Murdoch, A.D. The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem. J. 302, 625–639 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Perrimon, N. & Bernfield, M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404, 725–728 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Arikawa-Hirasawa, E., Watanabe, H., Takami, H., Hassell, J.R. & Yamada, Y. Perlecan is essential for cartilage and cephalic development. Nature Genet. 23, 354–358 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Costell, M. et al. Perlecan maintains the integrity of cartilage and some basement membranes. J. Cell Biol. 147, 1109–1122 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aleck, K.A. et al. Dyssegmental dysplasias: clinical, radiographic, and morphologic evidence of heterogeneity. Am. J. Med. Genet. 27, 295–312 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Westvik, J. & Lachman, R.S. Coronal and sagittal clefts in skeletal dysplasias. Pediatr. Radiol. 28, 764–770 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Dodge, G.R. et al. Heparan sulfate proteoglycan of human colon: partial molecular cloning, cellular expression, and mapping of the gene (HSPG2) to the short arm of human chromosome 1. Genomics 10, 673–680 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Kallunki, P. et al. Cloning of human heparan sulfate proteoglycan core protein, assignment of the gene (HSPG2) to 1p36.1–p35 and identification of a BamHI restriction fragment length polymorphism. Genomics 11, 389–396 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Murdoch, A.D., Dodge, G.R., Cohen, I., Tuan, R.S. & Iozzo, R.V. Primary structure of the human heparan sulfate proteoglycan from basement membrane (HSPG2/perlecan). A chimeric molecule with multiple domains homologous to the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J. Biol. Chem. 267, 8544–8557 (1992).

    CAS  PubMed  Google Scholar 

  13. Kallunki, P. & Tryggvason, K. Human basement membrane heparan sulfate proteoglycan core protein: a 467-kD protein containing multiple domains resembling elements of the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J. Cell Biol. 116, 559–571 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Cohen, I.R., Grassel, S., Murdoch, A.D. & Iozzo, R.V. Structural characterization of the complete human perlecan gene and its promoter. Proc. Natl. Acad. Sci. USA 90, 10404–10408 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, W., Qian, C. & Francke, U. Silent mutation induces exon skipping of fibrillin-1 gene in Marfan syndrome. Nature Genet. 16, 328–329 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Celebi, J.T., Wanner, M., Ping, X.L., Zhang, H. & Peacocke, M. Association of splicing defects in PTEN leading to exon skipping or partial intron retention in Cowden syndrome. Hum. Genet. 107, 234–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Messiaen, L.M. et al. Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum. Mutat. 15, 541–555 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Delot, E., Brodie, S.G., King, L.M., Wilcox, W.R. & Cohn, D.H. Physiological and pathological secretion of cartilage oligomeric matrix protein by cells in culture. J. Biol. Chem. 273, 26692–26697 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Hastbacka, J. et al. Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): evidence for a phenotypic series involving three chondrodysplasias. Am. J. Hum. Genet. 58, 255–262 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Superti-Furga, A. et al. Achondrogenesis type IB is caused by mutations in the diastrophic dysplasia sulphate transporter gene. Nature Genet. 12, 100–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. ul Haque, M.F. et al. Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse. Nature Genet. 20, 157–162 (1998).

    Article  Google Scholar 

  22. Kurima, K. et al. A member of a family of sulfate-activating enzymes causes murine brachymorphism. Proc. Natl. Acad. Sci. USA 95, 8681–8685 (1998); erratum: 95, 12071 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nicole, S. et al. Perlecan, the major proteoglycan of basement membranes, is altered in patients with Schwartz-Jampel syndrome (chondrodystrophic myotonia). Nature Genet. 26, 480–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. David, G., Bai, X.M., Van der Schueren, B., Cassiman, J.J. & Van den Berghe, H. Developmental changes in heparan sulfate expression: in situ detection with mAbs. J. Cell Biol. 119, 961–975 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Brodie, S.G. et al. Radiographic and morphologic findings in a previously undescribed type of mesomelic dysplasia resembling atelosteogenesis type II. Am. J. Med. Genet. 80, 247–251 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Brodie, S.G., Lachman, R.S., McGovern, M.M., Mekikian, P.B. & Wilcox, W.R. Lethal osteosclerotic skeletal dysplasia with intracellular inclusion bodies. Am. J. Med. Genet. 83, 372–377 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Murdoch, A.D., Liu, B., Schwarting, R., Tuan, R.S. & Iozzo, R.V. Widespread expression of perlecan proteoglycan in basement membranes and extracellular matrices of human tissues as detected by a novel monoclonal antibody against domain III and by in situ hybridization. J. Histochem. Cytochem. 42, 239–249 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Gruber, H.E., Lachman, R.S. & Rimoin, D.L. Calcospherite (calcification nodule) size in the short rib polydactyly syndromes. Scanning Microsc. 4, 775–780 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Rimoin, R. Lachman, E. Cukierman, E. Hoffman, C. Francomano, N. Ho, H. Watanabe, K. Kimata and H. Grand for comments; W. Cohen and J. King for referring the cases to the International Skeletal Dysplasia Registry; K. Yamada for anti-fibronectin antibodies; J. Couchman and R. Timpl for anti-perlecan antibodies; and B. Mekikian, K. Bolland and N. Hayes for technical support. W.R.W. was supported by NIH 5P01 HD22657. Some of this work was supported by grants from Seikagaku Corporation and from the Shriners of North America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arikawa-Hirasawa, E., Wilcox, W., Le, A. et al. Dyssegmental dysplasia, Silverman-Handmaker type, is caused by functional null mutations of the perlecan gene. Nat Genet 27, 431–434 (2001). https://doi.org/10.1038/86941

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86941

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing