Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia

Abstract

To ascertain the role of cyclin-dependent kinase 4 (Cdk4) in vivo, we have targeted the mouse Cdk4 locus by homologous recombination to generate two strains of mice, one that lacks Cdk4 expression and one that expresses a Cdk4 molecule with an activating mutation. Embryonic fibroblasts proliferate normally in the absence of Cdk4 but have a delayed S phase on re-entry into the cell cycle. Moreover, mice devoid of Cdk4 are viable, but small in size and infertile. These mice also develop insulin-deficient diabetes due to a reduction in β-islet pancreatic cells. In contrast, mice expressing a mutant Cdk4 that cannot bind the cell-cycle inhibitor P16INK4a display pancreatic hyperplasia due to abnormal proliferation of β-islet cells. These results establish Cdk4 as an essential regulator of specific cell types.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of Cdk4neo/neo mice.
Figure 2: Defective reproductive organs in Cdk4neo/neo mice.
Figure 3: Insulin-dependent diabetes in Cdk4neo/neo mice.
Figure 4: Defective pancreatic β-cell development in Cdk4neo/neo mice.
Figure 5: Reduced islet area in Cdk4neo/neo mice and islet hyperplasia in Cdk4R24C/R24C mice.
Figure 6: Generation of mice expressing Cdk4R24C.
Figure 7: Deregulation of Cdk4 activity results in testicular Leydig cell and pancreatic β-islet cell hyperplasia.

Similar content being viewed by others

References

  1. Sherr, C.J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Grana, X. & Reddy, E.P. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11, 211–219 (1995).

    CAS  PubMed  Google Scholar 

  3. Hunter, T. Oncoprotein networks. Cell 88, 333–346 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Morgan, D.O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Mulligan, G. & Jacks, T. The retinoblastoma gene family: cousins with overlapping interests. Trends Genet. 14, 223–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Hirama, T. & Koeffler, H.P. Role of the cyclin-dependent kinase inhibitors in the development of cancer. Blood 86, 841–854 (1995).

    CAS  PubMed  Google Scholar 

  8. Zuo, L. et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nature Genet. 12, 97–99 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Wolfel, T. et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269, 1281–1284 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Sicinski, P. et al. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82, 621–630 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Sicinski, P. et al. Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 384, 470–474 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Tybulewicz, V.L., Crawford, C.E., Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Toscani, A. et al. Arrest of spermatogenesis and defective breast development in mice lacking A-myb. Nature 386, 713–717 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Della, N.G., Bowtell, D.D. & Beck, F. Expression of Siah-2, a vertebrate homologue of Drosophila sina, in germ cells of the mouse ovary and testis. Cell Tissue Res. 279, 411–419 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Ashcroft, F.M & Ashcroft, S.J.H. Insulin: Molecular Biology to Pathology (Oxford University Press, New York, 1992).

    Google Scholar 

  16. Unger, R.H. & Foster, D.W. Williams Textbook of Endocrinology (eds Wilson, J.D. & Foster, D.W.) 1018–1029 (Saunders, Philadelphia, 1985).

    Google Scholar 

  17. Slack, J.M. Developmental biology of the pancreas. Development 121, 1569–1580 (1995).

    CAS  PubMed  Google Scholar 

  18. Hellerstrom, C. The life story of the pancreatic B cell. Diabetologia 26, 393–400 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Hoppener, J.W. et al. Molecular physiology of the islet amyloid polypeptide (IAPP)/amylin gene in man, rat, and transgenic mice. J. Cell. Biochem. 55, 39–53 (1994).

    Article  PubMed  Google Scholar 

  20. Unger, R.H. Diabetic hyperglycemia: link to impaired glucose transport in pancreatic β cells. Science 251, 1200–1205 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Payne, A.H. & Youngblood, G.L. Regulation of expression of steroidogenic enzymes in Leydig cells. Biol. Reprod. 52, 217–225 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Balvers, M. et al. Relaxin-like factor expression as a marker of differentiation in the mouse testis and ovary. Endocrinology 139, 2960–2970 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Fero, M.L. et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 85, 733–744 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Kiyokawa, H. et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 85, 721–732 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Nakayama, K. et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Cameron, D.F., Murray, F.T. & Drylie, D.D. Interstitial compartment pathology and spermatogenic disruption in testes from impotent diabetic men. Anat. Rec. 213, 53–62 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Murray, F.T., Cameron, D.F. & Orth, J.M. Gonadal dysfunction in the spontaneously diabetic BB rat. Metabolism 32, 141–147 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. Lejeune, H., Habert, R. & Saez, J.M. Origin, proliferation and differentiation of Leydig cells. J. Mol. Endocrinol. 20, 1–25 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Baker, J. et al. Effects of an Igf1 gene null mutation on mouse reproduction. Mol. Endocrinol. 10, 903–918 (1996).

    CAS  PubMed  Google Scholar 

  30. Hellerstrom, C. & Swenne, I. Functional maturation and proliferation of fetal pancreatic β-cells. Diabetes 40 (suppl. 2), 89–93 (1991).

    Article  PubMed  Google Scholar 

  31. Swenne, I. The role of glucose in the in vitro regulation of cell cycle kinetics and proliferation of fetal pancreatic B-cells. Diabetes 31, 754–760 (1982).

    Article  CAS  PubMed  Google Scholar 

  32. Swenne, I. Effects of aging on the regenerative capacity of the pancreatic B-cell of the rat. Diabetes 32, 14–19 (1983).

    Article  CAS  PubMed  Google Scholar 

  33. Dunlop, M., Muggli, E. & Clark, S. Association of cyclin-dependent kinase-4 and cyclin D1 in neonatal β cells after mitogenic stimulation by lysophosphatidic acid. Biochem. Biophys. Res. Commun. 218, 132–136 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Duvillie, B. et al. Phenotypic alterations in insulin-deficient mutant mice. Proc. Natl Acad. Sci. USA 94, 5137–5140 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tamemoto, H. et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372, 182–186 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Araki, E. et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372, 186–190 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, J.P., Baker, J., Perkins, A.S., Robertson, E.J. & Efstratiadis, A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59–72 (1993).

    CAS  PubMed  Google Scholar 

  38. Baker, J., Liu, J.P., Robertson, E.J. & Efstratiadis, A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73–82 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Bruning, J.C. et al. Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 88, 561–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Withers, D.J. et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900–904 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. DeChiara, T.M., Efstratiadis, A. & Robertson, E.J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345, 78–80 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Martinez, A.R., Zinaman, M.J., Jennings, V.H. & Lamprecht, V.M. Prediction and detection of the fertile period: the markers. Int. J. Fertil. Menopausal Stud. 40, 139–155 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Nicosia for his assistance with morphometric analysis and B. Elfenbien with pancreatic histology. This work was initiated when S.G.R., P.D., E.J.G. and M.B. were at the Bristol-Myers Squibb Pharmaceutical Research Institute. S.G.R. was partially supported by a FELS Foundation Grant awarded to E.P.R. P.D. was supported by a fellowship from the Association pour la Recherche sur le Cancer and by a grant from La Ligue Nationale Contre le Cancer de la Région Aquitaine. G.B. was supported by NIH grants RO1-AG-07988, RO1-AA-10221 and RR-00349. M.B. was partially supported by a grant from Pfizer S.A., Spain.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Premkumar Reddy or Mariano Barbacid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rane, S., Dubus, P., Mettus, R. et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nat Genet 22, 44–52 (1999). https://doi.org/10.1038/8751

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8751

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing