Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lack of macrophage fatty-acid–binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis

Abstract

The adipocyte fatty-acid–binding protein, aP2, has an important role in regulating systemic insulin resistance and lipid metabolism. Here we demonstrate that aP2 is also expressed in macrophages, has a significant role in their biological responses and contributes to the development of atherosclerosis. Apolipoprotein E (ApoE)-deficient mice also deficient for aP2 showed protection from atherosclerosis in the absence of significant differences in serum lipids or insulin sensitivity. aP2-deficient macrophages showed alterations in inflammatory cytokine production and a reduced ability to accumulate cholesterol esters when exposed to modified lipoproteins. Apoe−/− mice with Ap2+/+ adipocytes and Ap2−/− macrophages generated by bone-marrow transplantation showed a comparable reduction in atherosclerotic lesions to those with total aP2 deficiency, indicating an independent role for macrophage aP2 in atherogenesis. Through its distinct actions in adipocytes and macrophages, aP2 provides a link between features of the metabolic syndrome and could be a new therapeutic target for the prevention of atherosclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Insulin sensitivity and atherosclerosis in Ap2+/+Apoe−/− and Ap2−/−Apoe−/− mice on chow diet.
Figure 2: Expression of fatty-acid binding proteins in macrophages.
Figure 3: Expression of inflammatory cytokines and cholesterol ester levels in Ap2−/− macrophages.
Figure 4: Lipoprotein distribution, immunochemistry and atherosclerosis in Ap2−/− BMT mice.

Similar content being viewed by others

References

  1. Glatz, J.F.C. & van der Vusse, G.J. Cellular fatty acid-binding proteins:their function and physiological significance. Prog. Lipid Res. 35, 243–282 (1996).

    Article  CAS  Google Scholar 

  2. Coe, N.R. & Bernlohr, D.A. Physiological properties and functions of intracellular fatty acid-binding proteins. Biochim. Biophys. Acta 1391, 287–306 (1998).

    Article  CAS  Google Scholar 

  3. Spiegelman, B.M., Frank, M. & Green, H. Molecular cloning of mRNA from 3T3 adipocytes. Regulation of mRNA content for glycerolphosphate dehydrogenase and other differentiation-dependent proteins during adipocyte development. J. Biol. Chem. 258, 10083–10089 (1983).

    CAS  PubMed  Google Scholar 

  4. Hunt, C.R., Ro, J.H., Dobson, D.E., Min, H.Y. & Spiegelman, B.M. Adipocyte P2 gene: developmental expression and homology of 5′-flanking sequences among fat cell-specific genes. Proc. Natl. Acad. Sci. USA 83, 3786–3790 (1986).

    Article  CAS  Google Scholar 

  5. Amri, E.-Z., Bertrand, B., Ailhaud, G. & Grimaldi, P. Regulation of adipose cell differentiation. I. Fatty acids are inducers of the aP2 gene expression. J. Lipid Res. 32, 1449–1456 (1991).

    CAS  PubMed  Google Scholar 

  6. Distel, R.J., Robinson, G.S. & Spiegelman, B.M. Fatty acid regulation of gene expression. Transcriptional and post-transcriptional mechanisms. J. Biol. Chem. 267, 5937–5941 (1992).

    CAS  PubMed  Google Scholar 

  7. Hotamisligil, G.S. et al. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 274, 1377–1379 (1996).

    Article  CAS  Google Scholar 

  8. Uysal, K.T., Scheja, L., Wiesbrock, S.M., Bonner-Weir, S. & Hotamisligil, G.S. Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology 141, 3388–3396 (2000).

    Article  CAS  Google Scholar 

  9. Coe, N.R., Simpson, M.A. & Bernlohr, D.A. Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. J. Lipid Res. 40, 967–972 (1999).

    CAS  PubMed  Google Scholar 

  10. Scheja, L. et al. Altered insulin secretion associated with reduced lipolytic efficiency in aP2−/− mice. Diabetes 48, 1987–1994 (1999).

    Article  CAS  Google Scholar 

  11. Cousin, B. et al. A role for preadipocytes as macrophage-like cells. FASEB J. 13, 305–312 (1999).

    Article  CAS  Google Scholar 

  12. Ricote, M., Li, A.C., Willson, T.M., Kelly, C.J. & Glass, C.K. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391, 79–82 (1998).

    Article  CAS  Google Scholar 

  13. Jiang, C., Ting, A.T. & Seed, B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391, 82–86 (1998).

    Article  CAS  Google Scholar 

  14. Ricote, M. et al. Expression of the peroxisome proliferator-activated receptor γ (PPAR γ) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc. Natl. Acad. Sci. USA 95, 7614–7619 (1998).

    Article  CAS  Google Scholar 

  15. Nagy, L., Tontonoz, P., Alvarez, J.G., Chen, H. & Evans, R.M. Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR-γ. Cell 93, 229–240 (1998).

    Article  CAS  Google Scholar 

  16. Tontonoz, P., Nagy, L., Alvarez, J.G.A., Thomazy, V.A. & Evans, R.M. PPAR-γ Promotes Monocyte/Macrophage Differentiation and Uptake Of Oxidized LDL. Cell 93, 241–252 (1998).

    Article  CAS  Google Scholar 

  17. Pelton, P.D., Zhou, L., Demarest, K.T. & Burris, T.P. PPARγ activation induces the expression of the adipocyte fatty acid binding protein gene in human monocytes. Biochem. Biophys. Res. Comm. 261, 456–458 (1999).

    Article  CAS  Google Scholar 

  18. Fu, Y., Luo, N. & Lopes-Virella, M.F. Oxidized LDL induces the expression of ALBP/aP2 mRNA and protein in human THP-1 macrophages. J. Lipid Res. 41, 2017–2023 (2000).

    CAS  PubMed  Google Scholar 

  19. Surwit, R.S., Kuhn, C.M., Cochrane, C., McCubbin, J.A. & Feinglos, M.N. Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37, 1163–1167 (1988).

    Article  CAS  Google Scholar 

  20. Kunjathoor, V.V., Wilson, D.L. & LeBoeuf, R.C. Increased atherosclerosis in streptozotocin-induced diabetic mice. J. Clin.Invest. 97, 1767–1773 (1996).

    Article  CAS  Google Scholar 

  21. Kraal, G., Rep, M. & Janse, M. Macrophages in T and B cell compartments and other tissue macrophages recognized by monoclonal antibody MOMA-2. Scand. J. Immunol. 26, 653–661 (1987).

    Article  CAS  Google Scholar 

  22. Linton, M.F., Atkinson, J.B. & Fazio, S. Prevention of atherosclerosis in apoE deficient mice by bone marrow transplantation. Science 267, 1034–1037 (1995).

    Article  CAS  Google Scholar 

  23. Fazio, S. et al. Increased atherosclerosis in C57BL/6 mice reconstituted with apolipoprotein E null macrophages. Proc. Natl. Acad. Sci. USA 94, 4647–4652 (1997).

    Article  CAS  Google Scholar 

  24. Linton, M.F., Babaev, V.R., Gleaves, L.A. & Fazio, S. A direct role for the macrophage low density lipoprotein receptor in atherosclerotic lesion formation. J. Biol. Chem. 274, 19204–19210 (1999).

    Article  CAS  Google Scholar 

  25. Babaev, V.R. et al. Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in vivo. J. Clin. Invest. 103, 1697–1705 (1999).

    Article  CAS  Google Scholar 

  26. Wolfrum, C., Borrmann, C.M., Borchers, T. & Spener, F. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors α- and γ-mediated gene expression via liver fatty acid binding protein: A signaling path to the nucleus. Proc. Natl. Acad. Sci. USA 98, 2323–2328 (2001).

    Article  CAS  Google Scholar 

  27. Davis, P.J. n-3 and n-6 polyunsaturated fatty acids have different effects on acyl-CoA:cholesterol acyltransferase in J774 macrophages. Biochem. Cell Biol. 70, 1313–1318 (1992).

    Article  CAS  Google Scholar 

  28. Rumsey, S.C., Galeano, N.F., Lipschitz, B. & Deckelbaum, R.J. Oleate and other long chain fatty acids stimulate low density lipoprotein receptor activity by enhancing acyl coenzyme A:cholesterol acyltransferase activity and altering intracellular regulatory cholesterol pools in cultured cells. J. Biol. Chem. 270, 10008–10016 (1995).

    Article  CAS  Google Scholar 

  29. Fazio, S. et al. Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J. Clin. Invest. 107, 163–171 (2001).

    Article  CAS  Google Scholar 

  30. Babaev, V.R., Patel, M.B., Semenkovich, C.F., Fazio, S. & Linton, M.F. Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in low density lipoprotein receptor-deficient mice. J. Biol. Chem. 275, 26293–26299 (2000).

    Article  CAS  Google Scholar 

  31. Zhang, S.H., Reddick, R.L., Piedrahita, J.A. & Maeda, N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258, 468–471 (1992).

    Article  CAS  Google Scholar 

  32. Linton, M.F., Hasty, A.H., Babaev, V.R. & Fazio, S. Hepatic ApoE expression is required for remnant lipoprotein clearance in the absence of the low density lipoprotein receptor. J. Clin. Invest. 101, 1726–1736 (1998).

    Article  CAS  Google Scholar 

  33. Fazio, S. et al. Leukocyte low density lipoprotein receptor (LDL-R) does not contribute to LDL clearance in vivo: bone marrow transplantation studies in the mouse. J. Lipid Res. 38, 391–400 (1997).

    CAS  PubMed  Google Scholar 

  34. Uysal, K.T., Wiesbrock, S.M., Marino, M.W. & Hotamisligil, G.S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610–614 (1997).

    Article  CAS  Google Scholar 

  35. Uysal, K.T., Wiesbrock, S.M. & Hotamisligil, G.S. Functional analysis of TNF receptors in TNF-α-mediated insulin resistance in genetic obesity. Endocrinology 139, 4832–4838 (1998).

    Article  CAS  Google Scholar 

  36. Tangirala, R.K., Rubin, E.M. & Palinski, W. Quantitation of atherosclerosis in murine models: correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice. J. Lipid Res. 36, 2320–2328 (1995).

    CAS  PubMed  Google Scholar 

  37. Paigen, B., Morrow, A., Holmes, P.A., Mitchell, D. & Williams, R.A. Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis 68, 231–240 (1987).

    Article  CAS  Google Scholar 

  38. Kiener, P.A. et al. Stimulation of CD40 with purified soluble gp39 induces proinflammatory responses in human monocytes. J. Immunol. 155, 4917–4925 (1995).

    CAS  PubMed  Google Scholar 

  39. Blasi, E. et al. Selective immortalization of murine macrophages from fresh bone marrow by a raf/myc recombinant murine retrovirus. Nature 318, 667–670 (1985).

    Article  CAS  Google Scholar 

  40. Brown, W.J., Warfel, J. & Greenspan, P. Use of Nile red stain in the detection of cholesteryl ester accumulation in acid lipase-deficient fibroblasts. Arch. Pathol. Lab. Med. 112, 295–297 (1988).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grant HL65405-01. M.F.L., S.F., and J.S. are established investigators of the American Heart Association. J.B. is supported by a Diabetes Training Grant from the NIDDK (T32 DK7061). K.M. is supported by a postdoctoral fellowship from Manpei Suzuki Diabetes Foundation. G.S.H. is Pew Scholar in Biomedical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gökhan S. Hotamisligil or MacRae F. Linton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makowski, L., Boord, J., Maeda, K. et al. Lack of macrophage fatty-acid–binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat Med 7, 699–705 (2001). https://doi.org/10.1038/89076

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing