Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CIITA coordinates multiple histone acetylation modifications at the HLA-DRA promoter

Abstract

We present here an in vivo view of major histocompatibility complex (MHC) class II promoter assembly, nucleosome modifications and gene expression mediated by the class II transactivator (CIITA). Acetylation and deacetylation of histones H3 and H4 at the HLA-DRA promoter were found to occur during a time-course that depended on CIITA expression and binding. Expression of a CIITA mutant, which lacked the activation domain, induced H4 but not H3 histone acetylation. This suggested that multiple histone acetyltransferase activities are associated with MHC class II expression. H4 acetylation was mapped to Lys8, which implicated several histone acetyltransferases as possible modulators of this activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CIITA binds to the class II promoter, which results in increased histone acetylation
Figure 2: Kinetics of MHC class II induction in response to IFN-γ
Figure 3: Removal of IFN-γ results in a return to basal histone acetylation
Figure 4: Multiple HAT activities are modulated by CIITA binding
Figure 5: Lys8 of H4 is preferentially hyperacetylated in both CIITA+ and CIITA cells
Figure 6: Histone acetylation extends upstream of the HLA-DRA promoter

Similar content being viewed by others

References

  1. Boss, J. M. A common set of factors control the expression of the MHC class II, invariant chain, and HLA-DM genes. Microbes Infect. 1, 847–853 (1999).

    Article  CAS  Google Scholar 

  2. Reith, W., Muhlethaler-Mottet, A., Masternak, K., Villard, J. & Mach, B. The molecular basis of MHC class II deficiency and transcriptional control of MHC class II gene expression. Microbes Infect. 1, 839–846 (2000).

    Article  Google Scholar 

  3. Steimle, V., Otten, L. A., Zufferey, M. & Mach, B. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell 75, 135–146 (1993).

    Article  CAS  Google Scholar 

  4. Wright, K. L., Moore, T. L., Vilen, B. J., Brown, A. M. & Ting, J. P.-Y. Major histocompatibility complex class II-associated invariant chain gene expression is up-regulated by cooperative interactions of Sp1 and NF-Y. J. Biol. Chem. 270, 20978–20986 (1995).

    Article  CAS  Google Scholar 

  5. Westerheide, S. D., Louis-Plence, P., Ping, D., He, X.-F. & Boss, J. M. HLA-DMA and HLA-DMB gene expression functions through the conserved S-X-Y region. J. Immunol. 158, 4812–4821 (1997).

    CAS  PubMed  Google Scholar 

  6. Radley, E., Alderton, R. P., Kelly, A., Trowsdale, J. & Beck, S. Genomic organization of HLA-DMA and HLA-DMB. J. Biol. Chem. 269, 18834–18838 (1994).

    CAS  PubMed  Google Scholar 

  7. Martin, B. K. et al. Induction of MHC class I expression by the MHC class II transactivator CIITA. Immunity 6, 581–600 (1997).

    Article  Google Scholar 

  8. Gobin, S. J. P., Peijnenburg, A., Keijsers, V. & van den Elsen, P. J. Site α is crucial for two routes of IFN-γ-induced MHC class I transactivation: The ISRE-mediate route and a novel pathway involving CIITA. Immunity 6, 601–611 (1997).

    Article  CAS  Google Scholar 

  9. Griscelli, C., Lisowska-Grospierre, B. & Mach, B. Combined immunodeficiency with defective expression in MHC class II genes. Immunodeficiency Rev. 1, 135–153 (1989).

    CAS  Google Scholar 

  10. Benichou, B. & Strominger, J. L. Class II-antigen-negative patient and mutant B-cell lines represent at least three, and probably four, distinct genetic defects defined by complementation analysis. Proc. Natl Acad. Sci. USA 88, 4285–4288 (1991).

    Article  CAS  Google Scholar 

  11. Seidl, C., Saraiya, C., Osterweil, Z., Fu, Y. P. & Lee, J. S. Genetic complexity of regulatory mutants defective for HLA class II expression. J. Immunol. 148, 1576–1584 (1992).

    CAS  PubMed  Google Scholar 

  12. Nagarajan, U. M. et al. RFX-B is the gene responsible for the most common cause of the bare lymphocyte syndrome, a MHC class II immunodeficiency. Immunity 10, 153–162 (1999).

    Article  CAS  Google Scholar 

  13. Masternak, K. et al. A gene encoding a novel RFX-associated transactivator is mutated in the majority of MHC class II deficiency patients. Nature Genet. 20, 273–277 (1998).

    Article  CAS  Google Scholar 

  14. Steimle, V. et al. A novel DNA-binding regulatory factor is mutated in primary MHC class II deficiency (bare lymphocyte syndrome). Genes Dev. 9, 1021–1032 (1995).

    Article  CAS  Google Scholar 

  15. Durand, B. et al. RFXAP, a novel subunit of the RFX DNA binding complex, is mutated in MHC class II deficiency. EMBO J. 16, 1045–1055 (1997).

    Article  CAS  Google Scholar 

  16. Silacci, P., Mottet, A., Steimle, V., Reith, W. & Mach, B. Developmental extinction of major histocompatibility complex class II gene expression in plasmocytes is mediated by silencing of the transactivator gene CIITA. J. Exp. Med. 180, 1329–1336 (1994).

    Article  CAS  Google Scholar 

  17. Chang, C.-H., Fodor, W. L. & Flavell, R. A. Reactivation of a major histocompatibility complex class II gene in mouse plasmacytoma cells and mouse T cells. J. Exp. Med. 176, 1465–1469 (1992).

    Article  CAS  Google Scholar 

  18. Steimle, V., Siegrist, C.-A., Mottet, A., Lisowska-Grospierre, B. & Mach, B. Regulation of MHC class II expression by interferon-γ mediated by the transactivator gene CIITA. Science 265, 106–108 (1994).

    Article  CAS  Google Scholar 

  19. Chang, C.-H., Fontes, J. D., Peterlin, B. M. & Flavell, R. A. Class II transactivator (CIITA) is sufficient for the inducible expression of major histocompatibility complex class II genes. J. Exp. Med. 180, 1367–1374 (1994).

    Article  CAS  Google Scholar 

  20. Riley, J. L., Westerheide, S. D., Price, J. A., Brown, J. A. & Boss, J. M. Activation of class II MHC genes requires both the X box region and the class II transactivator (CIITA). Immunity 2, 533–543 (1995).

    Article  CAS  Google Scholar 

  21. Mahanta, S. K., Scholl, T., Yang, F.-C. & Strominger, J. L. Transactivation by CIITA, the type II bare lymphocyte syndrome-associated factor, requires participation of multiple regions of the TATA box binding protein. Proc. Natl Acad. Sci. USA 94, 6324–6329 (1997).

    Article  CAS  Google Scholar 

  22. Fontes, J. D., Jiang, B. & Peterlin, B. M. The class II trans-activator CIITA interacts with the TBP-associated factor TAFII32. Nucleic Acids Res. 25, 2522–2528 (1997).

    Article  CAS  Google Scholar 

  23. Fontes, J. D., Kanazawa, S., Jean, D. & Peterlin, B. M. Interactions between the class II transactivator and CREB binding protein increase transcription of major histocompatibility complex class II genes. Mol. Cell. Biol. 19, 941–947 (1999).

    Article  CAS  Google Scholar 

  24. Kretsovali, A. et al. Involvement of CREB binding protein in expression of major histocompatibility complex class II genes via interaction with the class II transactivator. Mol. Cell. Biol. 18, 6777–6783 (1998).

    Article  CAS  Google Scholar 

  25. Masternak, K. et al. CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev. 14, 1156–1166 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dedon, P. C., Soults, J. A., Allis, C. D. & Gorovsky, M. A. Formaldehyde cross-linking and immunoprecipitation demonstrate developmental changes in H1 association with transcriptionally active genes. Mol. Cell. Biol. 11, 1729–1733 (1991).

    Article  CAS  Google Scholar 

  27. Hecht, A. & Grunstein, M. Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. Meth. Enzymol. 304, 399–314 (1999).

    Article  CAS  Google Scholar 

  28. Moreno, C. S., Beresford, G. W., Louis-Plence, P., Morris, A. C. & Boss, J. M. CREB regulates MHC class II expression in a CIITA-dependent manner. Immunity 10, 143–151 (1999).

    Article  CAS  Google Scholar 

  29. DeSandro, A., Nagarajan, U. M. & Boss, J. M. Associations and interactions among the bare lymphocyte syndrome factors. Mol. Cell. Biol. 20, 6587–6599 (2000).

    Article  CAS  Google Scholar 

  30. Zhu, X. S. et al. Transcriptional scaffold: CIITA interacts with NF-Y, RFX, and CREB to cause stereospecific regulation of the class II major histocompatibility complex promoter. Mol. Cell. Biol. 20, 6051–6061 (2000).

    Article  CAS  Google Scholar 

  31. Heid, C. A., Stevens, J., Livak, K. J. & Williams, P. M. Real time quantitative PCR. Genet. Res. 6, 986–994 (2001).

    Article  Google Scholar 

  32. Wittwer, C. T., Herrmann, M. G., Moss, A. A. & Rasmussen, R. P. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22, 130–138 (1997).

    Article  CAS  Google Scholar 

  33. Brown, J. A., He, X.-F., Westerheide, S. D. & Boss, J. M. Characterization of the expressed CIITA allele in the class II MHC transcriptional mutant RJ2.2.5. Immunogenetics 43, 88–91 (1995).

    Article  Google Scholar 

  34. Kara, C. J. & Glimcher, L. H. In vivo footprinting of MHC class II genes: bare promoters in the bare lymphocyte syndrome. Science 252, 709–712 (1991).

    Article  CAS  Google Scholar 

  35. Van Lint, C., Emiliani, S., Ott, M. & Verdin, E. Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J. 15, 1112–1120 (1996).

    Article  CAS  Google Scholar 

  36. Utley, R. T. et al. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394, 498–502 (1998).

    Article  CAS  Google Scholar 

  37. Grant, P. A., Sterner, D. E., Duggan, L. J., Workman, J. L. & Berger, S. L. The SAGA unfolds: convergence of transcription regulators in chromatin-modifying complexes. Trends Cell Biol. 8, 193–197 (1998).

    Article  CAS  Google Scholar 

  38. Kuo, M.-H., Zhou, J., Jambeck, P., Churchill, M. E. A. & Allis, C. D. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12, 627–639 (1998).

    Article  CAS  Google Scholar 

  39. Chakravarti, D. et al. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 96, 393–403 (1999).

    Article  CAS  Google Scholar 

  40. Sterner, D. E. & Berger, S. L. Acetylation of histones and transcription-related factors. Microbiol. Rev. 64, 435–459 (2000).

    CAS  Google Scholar 

  41. Collins, T. et al. Immune interferon activates multiple class II major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts. Proc. Natl Acad. Sci. USA 81, 4917–4921 (1984).

    Article  CAS  Google Scholar 

  42. Brown, J. A., Rogers, E. M. & Boss, J. M. Mutational analysis of the MHC class II transactivator (CIITA) indicates a functional requirement for conserved LCD motifs and for interactions with the conserved W-box promoter element. Nucleic Acids Res. 26, 4128–4136 (1998).

    Article  CAS  Google Scholar 

  43. Raval, A. et al. Transcriptional coactivator, CIITA, Is an acetyltransferase that bypasses a promoter requirement for TAF(II)250. Mol. Cell 7, 105–115 (2001).

    Article  CAS  Google Scholar 

  44. Schiltz, R. L. et al. Overlapping but ditinct patterns of histione acetylation by the human coactivators p300 and PCAF within nucleosome substrates. J. Biol. Chem. 274, 1189–1192 (1999).

    Article  CAS  Google Scholar 

  45. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  Google Scholar 

  46. Smith, E. R. et al. The Drosophila MSL complex acetylates histone H4 at Lysine 16, a chromatin modication linked to dosage compensation. Mol. Cell. Biol. 20, 312–318 (2000).

    Article  CAS  Google Scholar 

  47. Brownell, J. E. & Allis, C. D. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Cur. Opin. Genet. Dev. 6, 176–184 (1996).

    Article  CAS  Google Scholar 

  48. Wright, K. L. & Ting, J. P.-Y. In vivo footprint analysis of the HLA-DRA gene promoter: Cell-specific interaction at the octamer site and up-regulation of X box binding by interferon-γ. Proc. Natl Acad. Sci. USA 89, 7601–7605 (1992).

    Article  CAS  Google Scholar 

  49. Wright, K. L. et al. CIITA stimulation of transcription factor binding to major histocompatibility complex class II and associated promoters in vivo. Proc. Natl Acad. Sci. USA 95, 6267–6272 (1998).

    Article  CAS  Google Scholar 

  50. Yang, X. J., Ogryzko, V. V., Nishikawa, J., Howard, B. H. & Nakatani, Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382, 319–324 (1996).

    Article  CAS  Google Scholar 

  51. Spilianakis, C., Papamatheakis, J. & Kretsovali, A. Acetylation by PCAF enhances CIITA nuclear accumulation and transactivation of major histocompatibility complex class II genes. Mol. Cell. Biol. 20, 8489–8498 (2000).

    Article  CAS  Google Scholar 

  52. Chrivia, J. C. et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859 (1993).

    Article  CAS  Google Scholar 

  53. Currie, R. A. NF-Y is associated with the histone acetyltransferases GCN5 and P/CAF. J. Biol. Chem. 273, 1430–1434 (1998).

    Article  CAS  Google Scholar 

  54. Epstein, M. A. et al. Morphological and virological investigations on cultured Burkitt tumor lymphoblasts (strain Raji). J. Natl Cancer Inst. 37, 547–559 (1966).

    CAS  PubMed  Google Scholar 

  55. Accolla, R. S. Human B cell variants immunoselected against a single Ia antigen subset have lost expression of several Ia antigen subsets. J. Exp. Med. 157, 1053–1058 (1983).

    Article  CAS  Google Scholar 

  56. Lisowska-Grospierre, B., Fondaneche, M.-C., Rols, M.-P., Griscelli, C. & Fischer, A. Two complementation groups account for most cases of inherited MHC class II deficiency. Hum. Mol. Genet. 3, 953–958 (1994).

    Article  CAS  Google Scholar 

  57. Baxter Lowe, L. A., Hunter, J. B., Casper, J. T. & Gorski, J. HLA gene amplification and hybridization analysis of polymorphism HLA matching for bone marrow transplantation of a patient with HLA-deficient severe combined immunodeficiency syndrome. J. Clin. Invest. 84, 613–618 (1989).

    Article  CAS  Google Scholar 

  58. Nagarajan, U. M., Peijnenburg, A., Gobin, S. J. P., Boss, J. M. & van den Elsen, P. J. Novel mutations within the RFX-B gene and partial rescue of MHC and related genes through exogenous class II transactivator in RFX-B-deficient cells. J. Immunol. 164, 3666–3674 (2000).

    Article  CAS  Google Scholar 

  59. Riley, J. L. & Boss, J. M. Class II MHC transcriptional mutants are defective in higher order complex formation. J. Immunol. 151, 6942–6953 (1993).

    CAS  PubMed  Google Scholar 

  60. Coligan, J. E., Kruisbeek, A. M. Margulies, D. H., Shevach, E. M. & Strober, W. (eds) Current Protocols in Immunology Vol. 1 (John Wiley & Sons, New York, 1991).

    Google Scholar 

Download references

Acknowledgements

We thank members of our laboratory and P. Wade and P. Jones for advice and critical comments. Supported by NIH grants GM47310 and AI34000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy M. Boss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beresford, G., Boss, J. CIITA coordinates multiple histone acetylation modifications at the HLA-DRA promoter. Nat Immunol 2, 652–657 (2001). https://doi.org/10.1038/89810

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89810

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing