Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

p53 in health and disease

Key Points

  • p53 is an important tumour-suppressor protein that is altered in most cancers.

  • p53 activates various responses, including cell-cycle arrest and apoptosis. Each of these appears to contribute to tumour suppression.

  • p53 responds to both acute stress, such as genotoxic stress and the activation of oncogenes, and constitutive stress induced by factors such as hypoxia or starvation stress. Each of these can contribute to tumour development.

  • In addition to tumour suppression, p53 can also have a role in normal development, during which loss of p53 can be detrimental.

  • The activation of p53 can have undesirable effects that might contribute to diseases such as neurodegenerative syndromes and also to the ageing process in an organism.

Abstract

As a component of the response to acute stress, p53 has a well established role in protecting against cancer development. However, it is now becoming clear that p53 can have a much broader role and can contribute to the development, life expectancy and overall fitness of an organism. Although the function of p53 as a tumour suppressor ensures that we can't live without it, an integrated view of p53 suggests that not all of its functions are conducive to a long and healthy life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation and functions of p53.
Figure 2: Structure of p53 family members.
Figure 3: p53 and metabolism.
Figure 4: Regulation of life and death by p53.
Figure 5: Temporal regulation of p53 activity in response to DNA damage.

Similar content being viewed by others

References

  1. Royds, J. A. & Iacopetta, B. p53 and disease: when the guardian angel fails. Cell Death Differ. 13, 1017–1026 (2006).

    CAS  PubMed  Google Scholar 

  2. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    CAS  PubMed  Google Scholar 

  3. Donehower, L. A. The p53-deficient mouse: a model for basic and applied cancer studies. Sem. Cancer Biol. 7, 269–278 (1996).

    CAS  Google Scholar 

  4. Pietsch, E. C., Humbey, O. & Murphey, M. E. Polymorphisms in the p53 pathway. Oncogene 25, 1602–1611 (2006).

    CAS  PubMed  Google Scholar 

  5. Lapenko, O. & Prives, C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 13, 951–961 (2006).

    Google Scholar 

  6. Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).

    CAS  PubMed  Google Scholar 

  7. Wei, C. -L. et al. A global map of p53 transcription-factor binding sites in the human genome. Cell 124, 207–219 (2006).

    CAS  PubMed  Google Scholar 

  8. Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650–1653 (2006). This paper provides evidence that loss of p53 might contribute to the Warburg effect.

    CAS  PubMed  Google Scholar 

  9. Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120 (2006).

    CAS  PubMed  Google Scholar 

  10. Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 14, 121–134 (2006).

    Google Scholar 

  11. Gatz, S. A. & Wiesmuller, L. p53 in recombination and repair. Cell Death Differ. 13, 1003–1016 (2006).

    CAS  PubMed  Google Scholar 

  12. Bensaad, K. & Vousden, K. H. Savior and slayer: the two faces of p53. Nature Med. 11, 1278–1279 (2005).

    CAS  PubMed  Google Scholar 

  13. Roger, L., Gadea, G. & Roux, P. Control of cell migration: a tumour suppressor function for p53? Biol. Cell 98, 141–152 (2006).

    CAS  PubMed  Google Scholar 

  14. Kortleverm, R. M., Higgins, P. J. & Bernards, R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nature Cell Biol. 8, 877–884 (2006).

    Google Scholar 

  15. Toeodoro, J. G., Parker, A. E., Zhu, X. & Green, M. R. p53-mediated inhibtion of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science 313, 968–971 (2006).

    Google Scholar 

  16. Murray-Zmijewski, F., Lane, D. P. & Bourdon, J. C. p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 13, 962–972 (2006).

    CAS  PubMed  Google Scholar 

  17. Wang, X. et al. p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling. J. Cell Biol. 172, 115–125 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yee, K. S. & Vousden, K. H. Complicating the complexity of p53. Carcinogenesis 26, 1317–1322 (2005).

    CAS  PubMed  Google Scholar 

  19. Moll, U. M., Wolff, S., Speidel, D. & Deppert, W. Transcription-independent pro-apoptotic functions of p53. Curr. Opin. Cell Biol. 17, 631–636 (2005).

    CAS  PubMed  Google Scholar 

  20. Yu, J. & Zhang, L. No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell 4, 248–249 (2003).

    CAS  PubMed  Google Scholar 

  21. Strom, E. et al. Small-molecule inhibitor of p53 binding to mitochondria protects mice from γ radiation. Nature Chem. Biol. 2, 474–479 (2006).

    CAS  Google Scholar 

  22. Chipuk, J. E., Bouchier-Hayes, L., Kuwana, T., Newmeyer, D. D. & Green, D. R. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309, 1732–1735 (2005). An elegant study that consolidates the transcriptionally dependent and independent activities of p53 into a single model.

    CAS  PubMed  Google Scholar 

  23. Levine, A. J., Hu, W. & Feng, Z. The p53 pathway: what questions remain to be explored? Cell Death Differ. 13, 1027–1036 (2006).

    CAS  PubMed  Google Scholar 

  24. Brooks, C. L. & Gu, W. p53 ubiquitination: Mdm2 and beyond. Mol. Cell 21, 307–315 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Braithwaite, A. W., Del Sal, G. & Lu, X. Some p53-binding proteins that can function as arbiters of life and death. Cell Death Differ. 13, 984–993 (2006).

    CAS  PubMed  Google Scholar 

  26. Harris, S. L. & Levine, A. J. The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899–2908 (2005).

    CAS  PubMed  Google Scholar 

  27. Marine, J. C. et al. Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ. 13, 927–934 (2006).

    CAS  PubMed  Google Scholar 

  28. Nordstrom, W. & Abrams, J. M. Guardian ancestry: fly p53 and damage-inducible apoptosis. Cell Death Differ. 7, 1035–1038 (2000).

    CAS  PubMed  Google Scholar 

  29. Derry, W. B., Putzke, A. P. & Rothman, J. H. Caenorhabditis elegans p53: role in apoptosis, meiosis and stress resistance. Science 294, 591–595 (2001).

    CAS  PubMed  Google Scholar 

  30. Schumacher, B., Hofmann, K., Boulton, S. & Gartner, A. The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr. Biol. 11, 1722–1727 (2001).

    CAS  PubMed  Google Scholar 

  31. Kamijo, T. et al. Loss of the ARF tumor suppressor reverses premature replicative arrest but not radiation hypersensitivity arising from disabled atm function. Cancer Res. 59, 2464–2469 (1999).

    CAS  PubMed  Google Scholar 

  32. Lohrum, M. A., Ludwig, R. L., Kubbutat, M. H. G., Hanlon, M. & Vousden, K. H. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3, 577–587 (2003).

    CAS  PubMed  Google Scholar 

  33. Christophorou, M. A., Ringhausen, I., Finch, A. J., Brown Swigart, L. & Evan, G. I. The pathological p53-mediated response to DNA damage is distinct from p53-mediated tumor suppression. Nature 14, 214–217 (2006).

    Google Scholar 

  34. Efeyan, A., Garcia-Cao, I., Herranz, D., Velasco-Miguel, S. & Serrano, M. Policing of oncogene activity by p53. Nature 443, 159 (2006). References 33 and 34 suggest that the response to oncogene activation, but not to DNA damage, is crucial for p53-mediated tumour suppression.

    CAS  PubMed  Google Scholar 

  35. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigensis. Nature 434, 864–870 (2005).

    CAS  PubMed  Google Scholar 

  36. Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005). Two studies that, in contrast to 33 and 34, show the importance of the DNA-damage signal to tumour suppression.

    CAS  PubMed  Google Scholar 

  37. Lassus, P., Ferlin, M., Piette, J. & Hibner, U. Anti-apoptotic activity of low levels of wild type p53. EMBO J. 15, 4566–4573 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jones, R. G. et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18, 283–293 (2005).

    CAS  PubMed  Google Scholar 

  39. Stambolsky, P. et al. Regulation of AIF expression by p53. Cell Death Differ. 13, 2140–2149 (2006).

    CAS  PubMed  Google Scholar 

  40. Johnson, T. M., Yu, Z.-X., Ferrans, V. J., Lowenstein, R. A. & Finkel, T. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc. Natl Acad. Sci. USA 93, 11848–11852 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W. & Vogelstein, B. A model for p53-induced apoptosis. Nature 389, 300–305 (1997).

    CAS  PubMed  Google Scholar 

  42. Velasco-Miguel, S. et al. PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene 18, 127–137 (1999).

    CAS  PubMed  Google Scholar 

  43. Budanov, A. V., Sablina, A. A., Feinstein, E., Koonin, E. V. & Chumakov, P. M. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304, 596–600 (2004).

    CAS  PubMed  Google Scholar 

  44. Yoon, K. A., Nakamura, Y. & Arakawa, H. Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J. Hum. Genet. 49, 134–140 (2004).

    CAS  PubMed  Google Scholar 

  45. Gu, S. et al. Global investigation of p53-induced apoptosis through quantitative proteomic profiling using comparative amino acid-coded tagging. Mol. Cell. Proteomics 3, 998–1008 (2006).

    Google Scholar 

  46. Sablina, A. A. et al. The antioxidant function of the p53 tumor suppressor gene. Nature Med. 11, 1306–1313 (2005). A demonstration of the antioxidant activity of basal levels of p53.

    CAS  PubMed  Google Scholar 

  47. Hemann, M. T. et al. Suppression of tumorigenesis by the p53 target PUMA. Proc. Natl Acad. Sci. USA 101, 9333–9338 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lowe, S. W., Cepero, E. & Evan, G. Intrinsic tumour suppression. Nature 432, 307–315 (2004).

    CAS  PubMed  Google Scholar 

  49. Liu, G. et al. Chromosomal stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nature Genet. 36, 63–68 (2004).

    CAS  PubMed  Google Scholar 

  50. Dimri, G. P. What has senescence got to do with cancer? Cancer Cell 7, 505–512 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Barbieri, C. E. & Pietenpol, J. A. p63 and epithelial biology. Exp. Cell Res. 312, 695–706 (2006).

    CAS  PubMed  Google Scholar 

  52. Flores, E. R. et al. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7, 363–373 (2005).

    CAS  PubMed  Google Scholar 

  53. Sutcliffe, J. E. & Brehm, A. Of flies and men; p53, a tumour suppressor. FEBS Lett. 567, 86–91 (2004).

    CAS  PubMed  Google Scholar 

  54. Mills, A. A. p53: link to the past, bridge to the future. Genes Dev. 19, 2091–2099 (2005).

    CAS  PubMed  Google Scholar 

  55. Chio, J. & Donehower, L. A. p53 in embryonic development: maintaining a fine balance. CMLS Cell. Mol. Life Sci. 55, 38–47 (1999).

    Google Scholar 

  56. Armstrong, J. F., Kaufman, M. H., Harrison, D. J. & Clarke, A. R. High-frequency developmental abnormalities in p53-deficient mice. Curr. Biol. 5, 931–936 (1995).

    CAS  PubMed  Google Scholar 

  57. Sah, V. P. et al. A subset of p53-deficient embyos exhibit exencephaly. Nature Genet. 10, 175–180 (1995).

    CAS  PubMed  Google Scholar 

  58. Hall, P. A. & Lane, D. P. Tumor suppressors: a developing role for p53? Curr. Biol. 7, R144–R147 (1997).

    CAS  PubMed  Google Scholar 

  59. Baatout, S. et al. Developmental abnormalities induced by X-irradiation in p53 deficient mice. In Vivo. 16, 215–221 (2002).

    CAS  PubMed  Google Scholar 

  60. Azuma, M., Toyama, R., Laver, E. & Dawid, I. B. Perturbation of rRNA synthesis in the bap28 mutation leads to apoptosis mediated by p53 in the zebrafish central nervous system. J. Biol. Chem. 281, 13309–13316 (2006).

    CAS  PubMed  Google Scholar 

  61. Plaster, N., Sonntag, C., Busse, C. E. & Hammerschmidt, M. p53 deficiency rescues apoptosis and differentiation of multiple cell types in zebrafish flathead mutants deficient for zygotic DNA polymerase δ1. Cell Death Differ. 13, 223–235 (2006).

    CAS  PubMed  Google Scholar 

  62. Chen, J. et al. Loss of function of def selectively up-regulates Δ113p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev. 19, 2900–2911 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Campbell, W. A. et al. Zebrafish lacking Alzheimer presenilin enhancer 2 (Pen-2) demonstrate excessive p53-dependent apoptosis and neuronal loss. J. Neurochem. 96, 1423–1440 (2006).

    CAS  PubMed  Google Scholar 

  64. Nicol, C. J., Harrison, M. L., Laposa, R. R., Gimelshtein, I. L. & Well, P. G. A teratologic suppressor role for p53 in benzo(a)pyrene-treated transgenic p53-deficient mice. Nature Genet. 10, 181–187 (1995).

    CAS  PubMed  Google Scholar 

  65. Norimura, T., Nomoto, S., Katsuki, M., Gondo, Y. & Kondo, S. p53-dependent apoptosis suppresses radiation-induced teratogenesis. Nature Med. 2, 577–580 (1996).

    CAS  PubMed  Google Scholar 

  66. Varley, J. M. Germline TP53 mutations and Li–Fraumeni syndrome. Hum. Mutat. 21, 313–320 (2003).

    CAS  PubMed  Google Scholar 

  67. Georgiev, P., Dahm, F., Graf, R. & Clavien, P. A. Blocking the path to death: anti-apoptotic molecules in ischemia/reperfusion injury of the liver. Curr. Pharm. Des. 12, 2911–2921 (2006).

    CAS  PubMed  Google Scholar 

  68. Fiskum, G. et al. Protection against ischemic brain injury by inhibition of mitochondrial oxidative stress. J. Bioenerg. Biomembr. 36, 347–352 (2004).

    CAS  PubMed  Google Scholar 

  69. Dagher, P. C. Apoptosis in ischemic renal injury: roles of GTP depletion and p53. Kidney Int. 66, 506–509 (2004).

    CAS  PubMed  Google Scholar 

  70. Matsusaka, H. et al. Targeted deletion of p53 prevents cardiac rupture after myocardial infarction in mice. Cardiovasc. Res. 70, 457–465 (2006).

    CAS  PubMed  Google Scholar 

  71. Jacobs, W. B., Kaplan, D. R. & Miller, F. D. The p53 family in nervous system development and disease. J. Neurochem. 97, 1571–1584 (2006).

    CAS  PubMed  Google Scholar 

  72. Tyner, S. D. et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 415, 45–53 (2002).

    CAS  PubMed  Google Scholar 

  73. Maier, B. et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 18, 306–319 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. van Heemst, D. et al. Variation in the human TP53 gene affects old age survival and cancer mortality. Exp. Gerontol. 40, 11–15 (2005).

    CAS  PubMed  Google Scholar 

  75. Sharpless, N. E. & DePinho, R. A. Telomeres, stem cells, senescence, and cancer. J. Clin. Invest. 113, 160–168 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bauer, J. H., Poon, P. C., Glatt-Deeley, H., Abrams, J. M. & Helfand, S. L. Neuronal expression of p53 dominant-negative proteins in adult Drosophila melanogaster extends life span. Curr. Biol. 15, 2063–2068 (2005).

    CAS  PubMed  Google Scholar 

  77. Bauer, J. H. & Helfand, S. L. New tricks of an old molecule: lifespan regulation by p53. Aging Cell 5, 437–440 (2006).

    CAS  PubMed  Google Scholar 

  78. Bourdon, J. C. et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 19, 2122–2137 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kondoh, H. et al. Glycolytic enzymes can modulate cellular lifespan. Cancer Res. 65, 177–185 (2005).

    CAS  PubMed  Google Scholar 

  80. Garcia-Cao, I. et al. “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J. 21, 6225–6235 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mendrysa, S. M. et al. Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev. 20, 16–21 (2006). References 80 and 81 show that increasing the copy number of p53 while maintaining normal control over expression does not result in enhanced ageing.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Mendrysa, S. M. & Perry, M. E. Tumor suppression by p53 without acceletated aging: just enough of a good thing? Cell Cycle 5, 714–717 (2006).

    CAS  PubMed  Google Scholar 

  83. Poyurovsky, M. V. & Prives, C. Unleashing the power of p53: lessons from mice and men. Genes Dev. 20, 125–131 (2006).

    CAS  PubMed  Google Scholar 

  84. Wells, B. S., Yoshida, E. & Johnston, L. A. Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr. Biol. 16, 1606–1615 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer 2, 594–604 (2002).

    CAS  Google Scholar 

  86. Christophorou, M. A. et al. Temporal diffection of p53 function in vitro and in vivo. Nature Genet. 37, 718–726 (2005).

    CAS  PubMed  Google Scholar 

  87. Soussi, T. & Lozano, G. p53 mutation heterogeneity in cancer. Biochem. Biophys. Res. Com. 331, 834–842 (2005).

    CAS  PubMed  Google Scholar 

  88. Lang, G. A. et al. Gain-of-function of a p53 hot spot mutation in a mouse model of Li–Fraumeni syndrome. Cell 119, 861–872 (2004).

    CAS  PubMed  Google Scholar 

  89. Olive, K. P. et al. Mutant p53 gain-of-function in two mouse models of Li–Fraumeni syndrome. Cell 119, 847–860 (2004). Two sophisticated studies showing the effects of expression of mutant p53 in mouse models.

    CAS  PubMed  Google Scholar 

  90. Irwin, M. S. Family feud in chemosensitivity: p73 and mutant p53. Cell Cycle 3, 319–323 (2004).

    CAS  PubMed  Google Scholar 

  91. Sigal, A. & Rotter, V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 60, 6788–6793 (2000).

    CAS  PubMed  Google Scholar 

  92. Kim, E. & Deppert, W. Transcriptional activities of mutant p53: when mutations are more than a loss. J. Cell Biochem. 93, 878–886 (2004).

    CAS  PubMed  Google Scholar 

  93. Bond, G. L. et al. A single nucleotide polymorphism in the Mdm2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119, 591–602 (2004).

    CAS  PubMed  Google Scholar 

  94. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecular antagonists of MDM2. Science 303, 844–848 (2004). One of a number of studies describing small-molecule activators of p53.

    CAS  PubMed  Google Scholar 

  95. Issaeva, N. et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nature Med. 10, 1321–1328 (2004).

    CAS  PubMed  Google Scholar 

  96. Yang, Y. et al. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7, 547–559 (2005).

    CAS  PubMed  Google Scholar 

  97. Komarov, P. G. et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285, 1733–1737 (1999). The description of a small-molecule inhibitor of p53

    CAS  PubMed  Google Scholar 

  98. Green, D. R. Apoptotic pathways: the roads to ruin. Cell 94, 695–698 (1998).

    CAS  PubMed  Google Scholar 

  99. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    CAS  PubMed  Google Scholar 

  100. Cory, S. & Adams, J. M. The Bcl2 family: regulators of the cellular life-or-death switch. Nature Rev. Cancer 2, 647–656 (2002).

    CAS  Google Scholar 

  101. Jeffers, J. R. et al. Puma is an essential mediator of p53-dependent and-independent apoptotic pathways. Cancer Cell 4, 321–328 (2003).

    CAS  PubMed  Google Scholar 

  102. Villunger, A. et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins Puma and Noxa. Science 302, 1036–1038 (2003).

    CAS  PubMed  Google Scholar 

  103. Vousden, K. H. p53 and PUMA: a deadly duo. Science 309, 1685–1686 (2005).

    CAS  PubMed  Google Scholar 

  104. Parks, D. J. et al. Enhanced pharmacokinetic properties of 1,4-benzodiazepine-2,5-dione antagonists of the HDM2–p53 protein–protein interaction through structure-based drug design. Bioog. Med. Chem. Lett. 16, 3310–3314 (2006).

    CAS  Google Scholar 

  105. Ding, K. et al. Structure-based design of potent non-peptide MDM2 inhibitors. J. Am. Chem. Soc. 127, 10130–10131 (2005).

    CAS  PubMed  Google Scholar 

  106. Lai, Z. et al. Differentiation of Hdm2-mediated p53 ubiquitination and Hdm2 autoubiquitination activity by small molecular weight inhibitors. Proc. Natl Acad. Sci. USA 99, 14734–14739 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Foster, B. A., Coffey, H. A., Morin, M. J. & Rastinejad, F. Pharmacological rescue of mutant p53 conformation and function. Science 286, 2507–2510 (1999).

    CAS  PubMed  Google Scholar 

  108. Bykov, V. J. N. et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nature Med. 8, 282–288 (2002).

    CAS  PubMed  Google Scholar 

  109. Gudkov, A. V. & Komarova, E. A. Prospective therapeutic applications of p53 inhibitors. Biochem. Biophys. Res. Com. 331, 726–736 (2005).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen H. Vousden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

Huntington disease

Li–Fraumeni syndrome

Parkinson's disease

FURTHER INFORMATION

Karen H. Vousden's homepage

David P. Lane's homepage

Glossary

ChIP analysis

A chromatin immuno-precipitation technique that identifies proteins that are bound to promoter sequences of genes in the context of endogenous chromatin.

Glycolysis

The metabolic pathway through which glucose is metabolized to provide energy.

Autophagy

A process in which parts of the cytoplasm, including the organelles it contains, are engulfed inside a membranous compartment and targeted to lysosomes for degradation.

BCL2 family

A family of proteins that share structural motifs and have an important role in positively and negatively regulating mitochondrial apoptotic pathways.

PUMA

(p53-upregulated mediator of apoptosis). A protein that belongs to the BCL2 family and that promotes mitochondrial outer membrane permeabilization and apoptosis.

Ubiquitin ligase

An enzyme that can transfer ubiquitin onto a protein, which can target the protein for degradation by the proteasome.

MDM2

A ubiquitin ligase that functions as an important negative regulator of p53. As the product of a p53-inducible gene, MDM2 functions in a negative-feedback loop with p53.

Warburg effect

An increase in aerobic glycolysis that is characteristic of cancer cells.

TIGAR

A gene that encodes a protein that functions to lower intracellular reactive oxygen species levels by enhancing the pentose phosphate pathway.

Pentose phosphate pathway

An alternative pathway for glucose metabolism that generates NADPH, which is needed for the scavenging of reactive oxygen species by reduced glutathione.

Sestrins

A family of proteins that modulate peroxide signalling and regulate intracellular reactive oxygen species levels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vousden, K., Lane, D. p53 in health and disease. Nat Rev Mol Cell Biol 8, 275–283 (2007). https://doi.org/10.1038/nrm2147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing