Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Haploidentical SCT: the mechanisms underlying the crossing of HLA barriers

Abstract

Research on the different mechanisms for crossing HLA barriers has progressed over the past 10 years. General outlines have come into view for a solution to this issue and are often presented as ‘haploidentical SCT’ immunology. In this review, we discuss several mechanisms that have recently been described in ex vivo and in vivo settings that can either avoid GVHD or promote hematopoietic reconstitution in haploidentical settings. The host and donor T-cell responses to allogeneic HLA molecules are a fundamental obstacle to the successful application of haploidentical transplantation, which results in unacceptably high incidences of GVHD and graft rejection. Thus, the T-cell response is a central factor in the establishment of a novel haploidentical transplant protocol with superior outcomes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Chang YJ, Huang XJ . Haploidentical hematopoietic stem cell transplantation with unmanipulated granulocyte colony stimulating factor mobilized marrow and blood grafts. Curr Opin Hematol 2012; 19: 454–461.

    CAS  PubMed  Google Scholar 

  2. Bashey A, Zhang X, Sizemore CA, Manion K, Brown S, Holland HK et al. T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol 2013; 31: 1310–1316.

    CAS  PubMed  Google Scholar 

  3. Chang YJ, Huang XJ . Haploidentical bone marrow transplantation without T-cell depletion. Semin Oncol 2012; 39: 653–663.

    PubMed  Google Scholar 

  4. Di Bartolomeo P, Santarone S, De Angelis G, Picardi A, Cudillo L, Cerretti R et al. Haploidentical, unmanipulated, G-CSF-primed bone marrow transplantation for patients with high-risk hematologic malignancies. Blood 2013; 121: 849–857.

    CAS  PubMed  Google Scholar 

  5. Reisner Y, Hagin D, Martelli MF . Haploidentical hematopoietic transplantation: current status and future perspectives. Blood 2011; 118: 6006–6017.

    CAS  PubMed  Google Scholar 

  6. Dvorak CC, Gilman AL, Horn B, Oon CY, Dunn EA, Baxter-Lowe LA et al. Haploidentical related-donor hematopoietic cell transplantation in children using megadoses of CliniMACs-selected CD34(+) cells and a fixed CD3(+) dose. Bone Marrow Transplant 2013; 48: 508–513.

    CAS  PubMed  Google Scholar 

  7. Huang XJ, Zhu HH, Chang YJ, Xu LP, Liu DH, Zhang XH et al. The superiority of haploidentical related stem cell transplantation over chemotherapy alone as postremission treatment for patients with intermediate- or high-risk acute myeloid leukemia in first complete remission. Blood 2012; 119: 5584–5590.

    CAS  PubMed  Google Scholar 

  8. Aversa F, Tabilio A, Velardi A, Cunningham I, Terenzi A, Falzetti F et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med 1998; 339: 1186–1193.

    CAS  PubMed  Google Scholar 

  9. Di Ianni M, Falzetti F, Carotti A, Terenzi A, Castellino F, Bonifacio E et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 2011; 117: 3921–3928.

    CAS  PubMed  Google Scholar 

  10. Kong YY, Eto M, Omoto K, Umesue M, Hashimoto A, Nomoto K . Regulatory T cells in maintenance and reversal of peripheral tolerance in vivo. J Immunol 1996; 157: 5284–5289.

    CAS  PubMed  Google Scholar 

  11. Leitner J, Grabmeier-Pfistershammer K, Majdic O, Zlabinger G, Steinberger P . Interaction of antithymocyte globulins with dendritic cell antigens. Am J Transplant 2011; 11: 138–145.

    CAS  PubMed  Google Scholar 

  12. Miller RG . An immunological suppressor cell inactivating cytotoxic T-lymphocyte precursor cells recognizing it. Nature 1980; 287: 544–546.

    CAS  PubMed  Google Scholar 

  13. Ophir E, Or-Geva N, Gurevich I, Tal O, Eidelstein Y, Shezen E et al. Murine anti-third-party central-memory CD8(+) T cells promote hematopoietic chimerism under mild conditioning: lymph-node sequestration and deletion of anti-donor T cells. Blood 2013; 121: 1220–1228.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    CAS  PubMed  Google Scholar 

  15. Booth C, Veys P . T cell depletion in paediatric stem cell transplantation. Clin Exp Immunol 2013; 172: 139–147.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Aversa F, Terenzi A, Tabilio A, Falzetti F, Carotti A, Ballanti S et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol 2005; 23: 3447–3454.

    PubMed  Google Scholar 

  17. Federmann B, Bornhauser M, Meisner C, Kordelas L, Beelen DW, Stuhler G et al. Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: a phase II study. Haematologica 2012; 97: 1523–1531.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chang Y-J, Zhao X-S, Lv M, Zhao X-Y, Han T-T, Wang H-T et al. CD19+CD24highCD38high B cells exhibit higher ability in TGF-{beta} and IL-10 secretion and suppressing of CD4+ T cell proliferation but are quantitatively decreased in G-BM of healthy donors (P2146). J Immunol 2013; 190 (Meeting Abstracts 1): 69–11.

    Google Scholar 

  19. Franzke A, Piao W, Lauber J, Gatzlaff P, Konecke C, Hansen W et al. G-CSF as immune regulator in T cells expressing the G-CSF receptor: implications for transplantation and autoimmune diseases. Blood 2003; 102: 734–739.

    CAS  PubMed  Google Scholar 

  20. Luyckx A, Schouppe E, Rutgeerts O, Lenaerts C, Fevery S, Devos T et al. G-CSF stem cell mobilization in human donors induces polymorphonuclear and mononuclear myeloid-derived suppressor cells. Clin Immunol 2012; 143: 83–87.

    CAS  PubMed  Google Scholar 

  21. Luznik L, O'Donnell PV, Fuchs EJ . Post-transplantation cyclophosphamide for tolerance induction in HLA-haploidentical bone marrow transplantation. Semin Oncol 2012; 39: 683–693.

    CAS  PubMed  Google Scholar 

  22. Rutella S, Zavala F, Danese S, Kared H, Leone G . Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance. J Immunol 2005; 175: 7085–7091.

    CAS  PubMed  Google Scholar 

  23. Ukena SN, Velaga S, Goudeva L, Ivanyi P, Olek S, Falk CS et al. Human regulatory T cells of G-CSF mobilized allogeneic stem cell donors qualify for clinical application. PLoS One 2012; 7: e51644.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Luznik L, High-dose Fuchs EJ . post-transplantation cyclophosphamide to promote graft-host tolerance after allogeneic hematopoietic stem cell transplantation. Immunol Res 2010; 47: 65–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Klein L, Hinterberger M, Wirnsberger G, Kyewski B . Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol 2009; 9: 833–844.

    CAS  PubMed  Google Scholar 

  26. Zheng Y, Delgoffe GM, Meyer CF, Chan W, Powell JD . Anergic T cells are metabolically anergic. J Immunol 2009; 183: 6095–6101.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Haspot F, Fehr T, Gibbons C, Zhao G, Hogan T, Honjo T et al. Peripheral deletional tolerance of alloreactive CD8 but not CD4 T cells is dependent on the PD-1/PD-L1 pathway. Blood 2008; 112: 2149–2155.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gur H . Tolerance induction by megadose hematopoietic progenitor cells: expansion of veto cells by short-term culture of purified human CD34+ cells. Blood 2002; 99: 4174–4181.

    CAS  PubMed  Google Scholar 

  29. Burrell BE, Nakayama Y, Xu J, Brinkman CC, Bromberg JS . Regulatory T cell induction, migration, and function in transplantation. J Immunol 2012; 189: 4705–4711.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fan Z, Spencer JA, Lu Y, Pitsillides CM, Singh G, Kim P et al. In vivo tracking of 'color-coded' effector, natural and induced regulatory T cells in the allograft response. Nat Med 2010; 16: 718–722.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Orr MT, Lanier LL . Natural killer cell education and tolerance. Cell 2010; 142: 847–856.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mueller DL . Mechanisms maintaining peripheral tolerance. Nat Immunol 2010; 11: 21–27.

    CAS  PubMed  Google Scholar 

  33. Mathis D, Benoist C . Levees of immunological tolerance. Nat Immunol 2010; 11: 3–6.

    CAS  PubMed  Google Scholar 

  34. Yu Y, Wang D, Liu C, Kaosaard K, Semple K, Anasetti C et al. Prevention of GVHD while sparing GVL effect by targeting Th1 and Th17 transcription factor T-bet and RORgammat in mice. Blood 2011; 118: 5011–5020.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Demirkiran A, Hendrikx TK, Baan CC, van der Laan LJ . Impact of immunosuppressive drugs on CD4+CD25+FOXP3+ regulatory T cells: does in vitro evidence translate to the clinical setting? Transplantation 2008; 85: 783–789.

    CAS  PubMed  Google Scholar 

  36. Baumgrass R, Brandt C, Wegner F, Abdollahnia M, Low-dose Worm M . but not high-dose, cyclosporin A promotes regulatory T-cell induction, expansion, or both. J Allergy Clin Immunol 2010; 126: 183–184 author reply 4.

    PubMed  Google Scholar 

  37. Demirkiran A, Sewgobind VD, van der Weijde J, Kok A, Baan CC, Kwekkeboom J et al. Conversion from calcineurin inhibitor to mycophenolate mofetil-based immunosuppression changes the frequency and phenotype of CD4+FOXP3+ regulatory T cells. Transplantation 2009; 87: 1062–1068.

    CAS  PubMed  Google Scholar 

  38. Wang Z, Shi B, Jin H, Xiao L, Chen Y, Qian Y . Low-dose of tacrolimus favors the induction of functional CD4(+)CD25(+)FoxP3(+) regulatory T cells in solid-organ transplantation. Int Immunopharmacol 2009; 9: 564–569.

    CAS  PubMed  Google Scholar 

  39. Alpdogan O, van den Brink MR . Immune tolerance and transplantation. Semin Oncol 2012; 39: 629–642.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Safinia N, Leech J, Hernandez-Fuentes M, Lechler R, Lombardi G . Promoting transplantation tolerance; adoptive regulatory T cell therapy. Clin Exp Immunol 2013; 172: 158–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Taylor PA, Lees CJ, Blazar BR . The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 2002; 99: 3493–3499.

    CAS  PubMed  Google Scholar 

  42. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S . Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med 2002; 196: 389–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Stern M, Ruggeri L, Mancusi A, Bernardo ME, de Angelis C, Bucher C et al. Survival after T cell-depleted haploidentical stem cell transplantation is improved using the mother as donor. Blood 2008; 112: 2990–2995.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL et al. Innate or adaptive immunity? The example of natural killer cells. Science 2011; 331: 44–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gur H, Krauthgamer R, Berrebi A, Klein T, Nagler A, Tabilio A et al. Tolerance induction by megadose hematopoietic progenitor cells: expansion of veto cells by short-term culture of purified human CD34(+) cells. Blood 2002; 99: 4174–4181.

    CAS  PubMed  Google Scholar 

  46. Foley JE, Mariotti J, Ryan K, Eckhaus M, Fowler DH . Th2 cell therapy of established acute graft-versus-host disease requires IL-4 and IL-10 and is abrogated by IL-2 or host-type antigen-presenting cells. Biol Blood Marrow Transplant 2008; 14: 959–972.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang J, Fan H, Hao J, Ren Y, Chen L, Li G et al. Amelioration of acute graft-versus-host disease by adoptive transfer of ex vivo expanded human cord blood CD4+CD25+ forkhead box protein 3+ regulatory T cells is associated with the polarization of Treg/Th17 balance in a mouse model. Transfusion 2012; 52: 1333–1347.

    CAS  PubMed  Google Scholar 

  48. Ophir E, Eidelstein Y, Afik R, Bachar-Lustig E, Reisner Y . Induction of tolerance to bone marrow allografts by donor-derived host nonreactive ex vivo-induced central memory CD8 T cells. Blood 2010; 115: 2095–2104.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gur H, Krauthgamer R, Bachar-Lustig E, Katchman H, Arbel-Goren R, Berrebi A et al. Immune regulatory activity of CD34+ progenitor cells: evidence for a deletion-based mechanism mediated by TNF-alpha. Blood 2005; 105: 2585–2593.

    CAS  PubMed  Google Scholar 

  50. Locatelli F, Bauquet A, Palumbo G, Moretta F, Bertaina A . Negative depletion of alpha/beta(+) T cells and of CD19+ B lymphocytes: A novel frontier to optimize the effect of innate immunity in HLA-mismatched hematopoietic stem cell transplantation. Immunol Lett 2013; 155: 21–23.

    CAS  PubMed  Google Scholar 

  51. Jun HX, Jun CY, Yu ZX . In vivo induction of T-cell hyporesponsiveness and alteration of immunological cells of bone marrow grafts using granulocyte colony-stimulating factor. Haematologica 2004; 89: 1517–1524.

    CAS  PubMed  Google Scholar 

  52. Arpinati M, Green CL, Heimfeld S, Heuser JE, Anasetti C . Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 2000; 95: 2484–2490.

    CAS  Google Scholar 

  53. Rutella S, Bonanno G, Pierelli L, Mariotti A, Capoluongo E, Contemi AM et al. Granulocyte colony-stimulating factor promotes the generation of regulatory DC through induction of IL-10 and IFN-alpha. Eur J Immunol 2004; 34: 1291–1302.

    CAS  PubMed  Google Scholar 

  54. Rossetti M, Gregori S, Roncarolo MG . Granulocyte-colony stimulating factor drives the in vitro differentiation of human dendritic cells that induce anergy in naive T cells. Eur J Immunol 2010; 40: 3097–3106.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mielcarek M, Graf L, Johnson G, Torok-Storb B . Production of interleukin-10 by granulocyte colony-stimulating factor-mobilized blood products: a mechanism for monocyte-mediated suppression of T-cell proliferation. Blood 1998; 92: 215–222.

    CAS  PubMed  Google Scholar 

  56. Mielcarek M, Martin PJ, Torok-Storb B . Suppression of alloantigen-induced T-cell proliferation by CD14+ cells derived from granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells. Blood 1997; 89: 1629–1634.

    CAS  PubMed  Google Scholar 

  57. Wang D, Yu Y, Haarberg K, Fu J, Kaosaard K, Nagaraj S et al. Dynamic change and impact of myeloid-derived suppressor cells in allogeneic bone marrow transplantation in mice. Biol Blood Marrow Transplant 2013; 19: 692–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zheng H, Matte-Martone C, Li H, Anderson BE, Venketesan S, Sheng Tan H et al. Effector memory CD4+ T cells mediate graft-versus-leukemia without inducing graft-versus-host disease. Blood 2008; 111: 2476–2484.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang J, Barefoot BE, Mo W, Deoliveira D, Son J, Cui X et al. CD62L- memory T cells enhance T-cell regeneration after allogeneic stem cell transplantation by eliminating host resistance in mice. Blood 2012; 119: 6344–6353.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kean LS, Sen S, Onabajo O, Singh K, Robertson J, Stempora L et al. Significant mobilization of both conventional and regulatory T cells with AMD3100. Blood 2011; 118: 6580–6590.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Thakar MS, Santos EB, Fricker S, Bridger G, Storb R, Sandmaier BM . Plerixafor-moblized stem cells alone are capable of inducing early engraftment across the MHC-haploidentical canine barrier. Blood 2010; 115: 916–917.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gaugler B, Arbez J, Legouill S, Tiberghien P, Moreau P, Derenne S et al. Characterization of peripheral blood stem cell grafts mobilized by granulocyte colony-stimulating factor and plerixafor compared with granulocyte colony-stimulating factor alone. Cytotherapy 2013; 15: 861–868.

    CAS  PubMed  Google Scholar 

  63. Eto M, Mayumi H, Tomita Y, Yoshikai Y, Nomoto K . Intrathymic clonal deletion of V beta 6+ T cells in cyclophosphamide-induced tolerance to H-2-compatible, Mls-disparate antigens. J Exp Med 1990; 171: 97–113.

    CAS  PubMed  Google Scholar 

  64. Kendal AR, Chen Y, Regateiro FS, Ma J, Adams E, Cobbold SP et al. Sustained suppression by Foxp3+ regulatory T cells is vital for infectious transplantation tolerance. J Exp Med 2011; 208: 2043–2053.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Luznik L, O'Donnell PV, Symons HJ, Chen AR, Leffell MS, Zahurak M et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant 2008; 14: 641–650.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Raiola AM, Dominietto A, Ghiso A, Di Grazia C, Lamparelli T, Gualandi F et al. Unmanipulated haploidentical bone marrow transplantation and posttransplantation cyclophosphamide for hematologic malignancies after myeloablative conditioning. Biol Blood Marrow Transplant 2013; 19: 117–122.

    CAS  PubMed  Google Scholar 

  67. Ross D, Jones M, Komanduri K, Levy RB . Antigen and lymphopenia driven donor T cells are differentially diminished by post-transplant administration of cyclophosphamide following hematopoietic cell transplantation. Biol Blood Marrow Transplant 2013; 19: 1430–1438.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mohty M . Mechanisms of action of antithymocyte globulin: T-cell depletion and beyond. Leukemia 2007; 21: 1387–1394.

    CAS  PubMed  Google Scholar 

  69. Ruzek MC, Waire JS, Hopkins D, Lacorcia G, Sullivan J, Roberts BL et al. Characterization of in vitro antimurine thymocyte globulin-induced regulatory T cells that inhibit graft-versus-host disease in vivo. Blood 2008; 111: 1726–1734.

    CAS  PubMed  Google Scholar 

  70. Feng X, Kajigaya S, Solomou EE, Keyvanfar K, Xu X, Raghavachari N et al. Rabbit ATG but not horse ATG promotes expansion of functional CD4+CD25highFOXP3+ regulatory T cells in vitro. Blood 2008; 111: 3675–3683.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Boenisch O, Lopez M, Elyaman W, Magee CN, Ahmad U, Najafian N . Ex vivo expansion of human Tregs by rabbit ATG is dependent on intact STAT3-signaling in CD4(+) T cells and requires the presence of monocytes. Am J Transplant 2012; 12: 856–866.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lim DG, Koo SK, Park YH, Kim Y, Kim HM, Park CS et al. Impact of immunosuppressants on the therapeutic efficacy of in vitro-expanded CD4+CD25+Foxp3+ regulatory T cells in allotransplantation. Transplantation 2010; 89: 928–936.

    CAS  PubMed  Google Scholar 

  73. Abadja F, Atemkeng S, Alamartine E, Berthoux F, Mariat C . Impact of mycophenolic acid and tacrolimus on Th17-related immune response. Transplantation 2011; 92: 396–403.

    CAS  PubMed  Google Scholar 

  74. Miroux C, Morales O, Ouaguia L, Aoudjehane L, Boleslawski E, Pancre V et al. Corticosteroids do not reverse the inhibitory effect of cyclosporine on regulatory T-cell activity in contrast to mycophenolate mofetil. Transplant Proc 2012; 44: 2834–2839.

    CAS  PubMed  Google Scholar 

  75. Pothoven KL, Kheradmand T, Yang Q, Houlihan JL, Zhang H, Degutes M et al. Rapamycin-conditioned donor dendritic cells differentiate CD4CD25Foxp3 T cells in vitro with TGF-beta1 for islet transplantation. Am J Transplant 2010; 10: 1774–1784.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zheng Y, Collins SL, Lutz MA, Allen AN, Kole TP, Zarek PE et al. A role for mammalian target of rapamycin in regulating T cell activation versus anergy. J Immunol 2007; 178: 2163–2170.

    CAS  PubMed  Google Scholar 

  77. Davies JK, Gribben JG, Brennan LL, Yuk D, Nadler LM, Guinan EC . Outcome of alloanergized haploidentical bone marrow transplantation after ex vivo costimulatory blockade: results of 2 phase 1 studies. Blood 2008; 112: 2232–2241.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. van Rood JJ, Loberiza Jr FR, Zhang MJ, Oudshoorn M, Claas F, Cairo MS et al. Effect of tolerance to noninherited maternal antigens on the occurrence of graft-versus-host disease after bone marrow transplantation from a parent or an HLA-haploidentical sibling. Blood 2002; 99: 1572–1577.

    PubMed  Google Scholar 

  79. Matsuoka K, Ichinohe T, Hashimoto D, Asakura S, Tanimoto M, Teshima T . Fetal tolerance to maternal antigens improves the outcome of allogeneic bone marrow transplantation by a CD4+ CD25+ T-cell-dependent mechanism. Blood 2006; 107: 404–409.

    CAS  PubMed  Google Scholar 

  80. Opiela SJ, Levy RB, Adkins B . Murine neonates develop vigorous in vivo cytotoxic and Th1/Th2 responses upon exposure to low doses of NIMA-like alloantigens. Blood 2008; 112: 1530–1538.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Fitzhugh CD, Weitzel RP, Hsieh MM, Phang OA, Madison C, Luznik L et al. Sirolimus and post transplant Cy synergistically maintain mixed chimerism in a mismatched murine model. Bone Marrow Transplant 2013; 48: 1335–1341.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kasamon YL, Luznik L, Leffell MS, Kowalski J, Tsai HL, Bolanos-Meade J et al. Nonmyeloablative HLA-haploidentical bone marrow transplantation with high-dose posttransplantation cyclophosphamide: effect of HLA disparity on outcome. Biol Blood Marrow Transplant 2010; 16: 482–489.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sodani P, Isgro A, Gaziev J, Polchi P, Paciaroni K, Marziali M et al. Purified T-depleted, CD34+ peripheral blood and bone marrow cell transplantation from haploidentical mother to child with thalassemia. Blood 2010; 115: 1296–1302.

    CAS  PubMed  Google Scholar 

  84. Brunstein CG, Fuchs EJ, Carter SL, Karanes C, Costa LJ, Wu J et al. Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood 2011; 118: 282–288.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Grosso D, Carabasi M, Filicko-O'Hara J, Kasner M, Wagner JL, Colombe B et al. A 2-step approach to myeloablative haploidentical stem cell transplantation: a phase 1/2 trial performed with optimized T-cell dosing. Blood 2011; 118: 4732–4739.

    CAS  PubMed  Google Scholar 

  86. Bolanos-Meade J, Fuchs EJ, Luznik L, Lanzkron SM, Gamper CJ, Jones RJ et al. HLA-haploidentical bone marrow transplantation with posttransplant cyclophosphamide expands the donor pool for patients with sickle cell disease. Blood 2012; 120: 4285–4291.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu LP, Liu KY, Liu DH, Han W, Chen H, Chen YH et al. A novel protocol for haploidentical hematopoietic SCT without in vitro T-cell depletion in the treatment of severe acquired aplastic anemia. Bone Marrow Transplant 2012; 47: 1507–1512.

    CAS  PubMed  Google Scholar 

  88. Wang HX, Yan HM, Wang ZD, Xue M, Liu J, Guo ZK . Haploidentical hematopoietic stem cell transplantation in hematologic malignancies with G-CSF mobilized bone marrow plus peripheral blood stem cells grafts without T cell depletion: a single center report of 29 cases. Leuk Lymphoma 2012; 53: 654–659.

    CAS  PubMed  Google Scholar 

  89. Solomon SR, Sizemore CA, Sanacore M, Zhang X, Brown S, Holland HK et al. Haploidentical transplantation using T cell replete peripheral blood stem cells and myeloablative conditioning in patients with high-risk hematologic malignancies who lack conventional donors is well tolerated and produces excellent relapse-free survival: results of a prospective phase II trial. Biol Blood Marrow Transplant 2012; 18: 1859–1866.

    PubMed  Google Scholar 

  90. Ciurea SO, Mulanovich V, Saliba RM, Bayraktar UD, Jiang Y, Bassett R et al. Improved early outcomes using a T cell replete graft compared with T cell depleted haploidentical hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2012; 18: 1835–1844.

    PubMed  PubMed Central  Google Scholar 

  91. Bashey A, Zhang X, Sizemore CA, Manion K, Brown S, Holland HK et al. T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol 2013; 31: 1310–1316.

    CAS  PubMed  Google Scholar 

  92. Wang Y, Liu DH, Liu KY, Xu LP, Zhang XH, Han W et al. Long-term follow-up of haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for the treatment of leukemia: nine years of experience at a single center. Cancer 2013; 119: 978–985.

    PubMed  Google Scholar 

  93. Vago L, Oliveira G, Bondanza A, Noviello M, Soldati C, Ghio D et al. T-cell suicide gene therapy prompts thymic renewal in adults after hematopoietic stem cell transplantation. Blood 2012; 120: 1820–1830.

    CAS  PubMed  Google Scholar 

  94. Gerdemann U, Keirnan JM, Katari UL, Yanagisawa R, Christin AS, Huye LE et al. Rapidly generated multivirus-specific cytotoxic T lymphocytes for the prophylaxis and treatment of viral infections. Mol Ther 2012; 20: 1622–1632.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chang YJ, Zhao XY, Huo MR, Xu LP, Liu DH, Liu KY et al. Immune reconstitution following unmanipulated HLA-mismatched/haploidentical transplantation compared with HLA-identical sibling transplantation. J Clin Immunol 2012; 32: 268–280.

    CAS  PubMed  Google Scholar 

  96. Huang XJ, Liu DH, Liu KY, Xu LP, Chen H, Han W et al. Treatment of acute leukemia with unmanipulated HLA-mismatched/haploidentical blood and bone marrow transplantation. Biol Blood Marrow Transplant 2009; 15: 257–265.

    CAS  PubMed  Google Scholar 

  97. Velardi A . Haplo-BMT: which approach? Blood 2013; 121: 719–720.

    CAS  PubMed  Google Scholar 

  98. Ciceri F, Bregni M, Peccatori J . Innovative platforms for haploidentical stem cell transplantation: the role of unmanipulated donor graft. J Cancer 2011; 2: 339–340.

    PubMed  PubMed Central  Google Scholar 

  99. Ciceri F, Lupo-Stanghellini MT, Korthof ET . Haploidentical transplantation in patients with acquired aplastic anemia. Bone Marrow Transplant 2013; 48: 183–185.

    CAS  PubMed  Google Scholar 

  100. Le Huu D, Matsushita T, Jin G, Hamaguchi Y, Hasegawa M, Takehara K et al. Donor-derived regulatory B cells are important for suppression of murine sclerodermatous chronic graft-versus-host disease. Blood 2013; 121: 3274–3283.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the many agencies that provided grant support, including the National Natural Science Foundation of China (Grant No. 30971292), the Natural Science Foundation of Beijing (Grant No. 7122193), the National High Technology Research and Development Program of China (Program 863; Grant No. 2011AA020105) and the Clinical Subject’s Key Project of the Ministry of Health and the National Natural Science Foundation of China (Grant No. 30725038). We also thank San Francisco Edit (www.sfedit.net) and American Journal Experts (http://www.aje.com) for their assistance in editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X-J Huang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YJ., Huang, XJ. Haploidentical SCT: the mechanisms underlying the crossing of HLA barriers. Bone Marrow Transplant 49, 873–879 (2014). https://doi.org/10.1038/bmt.2014.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2014.19

Keywords

This article is cited by

Search

Quick links