Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transferrin lipoplex-mediated suicide gene therapy of oral squamous cell carcinoma in an immunocompetent murine model and mechanisms involved in the antitumoral response

Abstract

Suicide gene therapy has been used for the treatment of a variety of cancers. We reported previously the in vitro efficacy of the Herpes Simplex Virus Thymidine kinase (HSV-tk)/ganciclovir (GCV) system to mediate cytotoxicity in oral squamous cancer cells, using transferrin (Tf)-lipoplexes, prepared from cationic liposomes composed of 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and cholesterol. In the present study, we evaluated the antitumoral efficacy mediated by this lipoplex formulation in two suicide gene therapy strategies, HSV-tk/GCV and cytosine deaminase (CD)/5-fluorocytosine (5-FC), using a syngeneic, orthotopic murine model for head and neck squamous cell carcinoma. The cellular and molecular events associated with the antitumoral response elicited by both the therapeutic approaches were investigated by analyzing tumor cell death, tumor-infiltrating immune cells and tumor cytokine microenvironment. Significant tumor reduction was achieved upon intratumoral delivery of HSV-tk or CD genes mediated by Tf-lipoplexes, followed by intraperitoneal injection of GCV or 5-FC, respectively. Enhanced apoptosis, the recruitment of NK cells, CD4 and CD8 T-lymphocytes and an increase in the levels of several cytokines/chemokines were observed within the tumors. These observations suggest that suicide gene therapy with lipoplexes modifies the tumor microenvironment, and leads to the recruitment of immune effector cells that can act as adjuvants in reducing the tumor size.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ . Cancer statistics, 2007. CA Cancer J Clin 2007; 57: 43–66.

    Article  PubMed  Google Scholar 

  2. Forastiere A, Koch W, Trotti A, Sidransky D . Head and neck cancer. N Engl J Med 2001; 345: 1890–1900.

    Article  CAS  PubMed  Google Scholar 

  3. Forastiere AA, Trotti A, Pfister DG, Grandis JR . Head and neck cancer: recent advances and new standards of care. J Clin Oncol 2006; 24: 2603–2605.

    Article  PubMed  Google Scholar 

  4. McCormick F . Cancer gene therapy: fringe or cutting edge? Nat Rev Cancer 2001; 1: 130–141.

    Article  CAS  PubMed  Google Scholar 

  5. Hughes RM . Strategies for cancer gene therapy. J Surg Oncol 2004; 85: 28–35.

    Article  CAS  PubMed  Google Scholar 

  6. Lal S, Lauer UM, Niethammer D, Beck JF, Schlegel PG . Suicide genes: past, present and future perspectives. Immunol Today 2000; 21: 48–54.

    Article  CAS  PubMed  Google Scholar 

  7. Portsmouth D, Hlavaty J, Renner M . Suicide genes for cancer therapy. Mol Aspects Med 2007; 28: 4–41.

    Article  CAS  PubMed  Google Scholar 

  8. Moolten FL . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 1986; 46: 5276–5281.

    CAS  PubMed  Google Scholar 

  9. Balfour Jr HH . Antiviral drugs. N Engl J Med 1999; 340: 1255–1268.

    Article  CAS  PubMed  Google Scholar 

  10. Mullen CA, Kilstrup M, Blaese RM . Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc Natl Acad Sci USA 1992; 89: 33–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bertin S, Neves S, Pedroso de Lima M, Pierrefite-Carle V . Naked DNA and lipoplexes applications in cancer gene therapy. Bull Cancer 2007; 94: 243–252.

    CAS  PubMed  Google Scholar 

  12. Pedroso de Lima MC, Neves S, Filipe A, Duzgunes N, Simoes S . Cationic liposomes for gene delivery: from biophysics to biological applications. Curr Med Chem 2003; 10: 1221–1231.

    Article  CAS  PubMed  Google Scholar 

  13. Edelstein ML, Abedi MR, Wixon J . Gene therapy clinical trials worldwide to 2007—an update. J Gene Med 2007; 9: 833–842.

    Article  PubMed  Google Scholar 

  14. Pedroso de Lima MC, Simoes S, Pires P, Faneca H, Duzgunes N . Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev 2001; 47: 277–294.

    Article  CAS  PubMed  Google Scholar 

  15. Simoes S, Filipe A, Faneca H, Mano M, Penacho N, Duzgunes N et al. Cationic liposomes for gene delivery. Expert Opin Drug Deliv 2005; 2: 237–254.

    Article  CAS  PubMed  Google Scholar 

  16. Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL et al. The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 1993; 53: 5274–5283.

    CAS  PubMed  Google Scholar 

  17. Pope IM, Poston GJ, Kinsella AR . The role of the bystander effect in suicide gene therapy. Eur J Cancer 1997; 33: 1005–1016.

    Article  CAS  PubMed  Google Scholar 

  18. Cheng PW . Receptor ligand-facilitated gene transfer: enhancement of liposome-mediated gene transfer and expression by transferrin. Hum Gene Ther 1996; 7: 275–282.

    Article  CAS  PubMed  Google Scholar 

  19. Simoes S, Slepushkin V, Gaspar R, de Lima MC, Duzgunes N . Gene delivery by negatively charged ternary complexes of DNA, cationic liposomes and transferrin or fusigenic peptides. Gene Therapy 1998; 5: 955–964.

    Article  CAS  PubMed  Google Scholar 

  20. Simoes S, Slepushkin V, Pires P, Gaspar R, de Lima MP, Duzgunes N . Mechanisms of gene transfer mediated by lipoplexes associated with targeting ligands or pH-sensitive peptides. Gene Therapy 1999; 6: 1798–1807.

    Article  CAS  PubMed  Google Scholar 

  21. Simoes S, Slepushkin V, Pires P, Gaspar R, Pedroso de Lima MC, Duzgunes N . Human serum albumin enhances DNA transfection by lipoplexes and confers resistance to inhibition by serum. Biochim Biophys Acta 2000; 1463: 459–469.

    Article  CAS  PubMed  Google Scholar 

  22. Faneca H, Simoes S, Pedroso de Lima MC . Association of albumin or protamine to lipoplexes: enhancement of transfection and resistance to serum. J Gene Med 2004; 6: 681–692.

    Article  CAS  PubMed  Google Scholar 

  23. Kichler A, Mechtler K, Behr JP, Wagner E . Influence of membrane-active peptides on lipospermine/DNA complex mediated gene transfer. Bioconjug Chem 1997; 8: 213–221.

    Article  CAS  PubMed  Google Scholar 

  24. Plank C, Oberhauser B, Mechtler K, Koch C, Wagner E . The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J Biol Chem 1994; 269: 12918–12924.

    CAS  PubMed  Google Scholar 

  25. Princen F, Robe P, Lechanteur C, Mesnil M, Rigo JM, Gielen J et al. A cell type-specific and gap junction-independent mechanism for the herpes simplex virus-1 thymidine kinase gene/ganciclovir-mediated bystander effect. Clin Cancer Res 1999; 5: 3639–3644.

    CAS  PubMed  Google Scholar 

  26. Zanta MA, Belguise-Valladier P, Behr JP . Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci USA 1999; 96: 91–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neves SS, Sarmento-Ribeiro AB, Simoes SP, Pedroso de Lima MC . Transfection of oral cancer cells mediated by transferrin-associated lipoplexes: mechanisms of cell death induced by herpes simplex virus thymidine kinase/ganciclovir therapy. Biochim Biophys Acta 2006; 1758: 1703–1712.

    Article  CAS  PubMed  Google Scholar 

  28. Simoes S, Slepushkin V, Pretzer E, Dazin P, Gaspar R, Pedroso de Lima MC et al. Transfection of human macrophages by lipoplexes via the combined use of transferrin and pH-sensitive peptides. J Leukoc Biol 1999; 65: 270–279.

    Article  CAS  PubMed  Google Scholar 

  29. da Cruz MT, Simoes S, de Lima MC . Improving lipoplex-mediated gene transfer into C6 glioma cells and primary neurons. Exp Neurol 2004; 187: 65–75.

    Article  PubMed  Google Scholar 

  30. da Cruz MT, Cardoso AL, de Almeida LP, Simoes S, de Lima MC . Tf-lipoplex-mediated NGF gene transfer to the CNS: neuronal protection and recovery in an excitotoxic model of brain injury. Gene Therapy 2005; 12: 1242–1252.

    Article  PubMed  Google Scholar 

  31. Pierrefite-Carle V, Baque P, Gavelli A, Mala M, Chazal M, Gugenheim J et al. Cytosine deaminase/5-fluorocytosine-based vaccination against liver tumors: evidence of distant bystander effect. J Natl Cancer Inst 1999; 91: 2014–2019.

    Article  CAS  PubMed  Google Scholar 

  32. O'Malley BW, Cope KA, Chen SH, Li D, Schwarta MR, Woo SL . Combination gene therapy for oral cancer in a murine model. Cancer Res 1996; 56: 1737–1741.

    CAS  PubMed  Google Scholar 

  33. O'Malley Jr BW, Cope KA, Johnson CS, Schwartz MR . A new immunocompetent murine model for oral cancer. Arch Otolaryngol Head Neck Surg 1997; 123: 20–24.

    Article  PubMed  Google Scholar 

  34. Huber BE, Austin EA, Good SS, Knick VC, Tibbels S, Richards CA . In vivo antitumor activity of 5-fluorocytosine on human colorectal carcinoma cells genetically modified to express cytosine deaminase. Cancer Res 1993; 53: 4619–4626.

    CAS  PubMed  Google Scholar 

  35. Bentires-Alj M, Hellin AC, Lechanteur C, Princen F, Lopez M, Fillet G et al. Cytosine deaminase suicide gene therapy for peritoneal carcinomatosis. Cancer Gene Ther 2000; 7: 20–26.

    Article  CAS  PubMed  Google Scholar 

  36. Pierrefite-Carle V, Baque P, Gavelli A, Benchimol D, Bourgeon A, Milano G et al. Regression of experimental liver tumor after distant intra-hepatic injection of cytosine deaminase-expressing tumor cells and 5-fluorocytosine treatment. Int J Mol Med 2000; 5: 275–278.

    CAS  PubMed  Google Scholar 

  37. Mullen CA, Coale MM, Lowe R, Blaese RM . Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild type tumor. Cancer Res 1994; 54: 1503–1506.

    CAS  PubMed  Google Scholar 

  38. Fischer U, Steffens S, Frank S, Rainov NG, Schulze-Osthoff K, Kramm CM . Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/5-fluorocytosine suicide gene therapy-induced cell death in glioma cells. Oncogene 2005; 24: 1231–1243.

    Article  CAS  PubMed  Google Scholar 

  39. Kuriyama S, Kikukawa M, Masui K, Okuda H, Nakatani T, Akahane T et al. Cancer gene therapy with HSV-tk/GCV system depends on T-cell-mediated immune responses and causes apoptotic death of tumor cells in vivo. Int J Cancer 1999; 83: 374–380.

    Article  CAS  PubMed  Google Scholar 

  40. Chiu CC, Kang YL, Yang TH, Huang CH, Fang K . Ectopic expression of herpes simplex virus-thymidine kinase gene in human non-small cell lung cancer cells conferred caspase-activated apoptosis sensitized by ganciclovir. Int J Cancer 2002; 102: 328–333.

    Article  CAS  PubMed  Google Scholar 

  41. Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL . NK cell regulation of T cell-mediated responses. Mol Immunol 2005; 42: 451–454.

    Article  CAS  PubMed  Google Scholar 

  42. Goebel EA, Davidson BL, Graham SM, Kern JA . Tumor reduction in vivo after adenoviral mediated gene transfer of the herpes simplex virus thymidine kinase gene and ganciclovir treatment in human head and neck squamous cell carcinoma. Otolaryngol Head Neck Surg 1998; 119: 331–336.

    Article  CAS  PubMed  Google Scholar 

  43. Morris JC, Wildner O . Therapy of head and neck squamous cell carcinoma with an oncolytic adenovirus expressing HSV-tk. Mol Ther 2000; 1: 56–62.

    Article  CAS  PubMed  Google Scholar 

  44. Kanazawa T, Mizukami H, Okada T, Hanazono Y, Kume A, Nishino H et al. Suicide gene therapy using AAV-HSVtk/ganciclovir in combination with irradiation results in regression of human head and neck cancer xenografts in nude mice. Gene Therapy 2003; 10: 51–58.

    Article  CAS  PubMed  Google Scholar 

  45. Boleas Aguirre MS, Fernandez Gonzalez S, Gallego Madrid MA, Garcia-Tapia Urrutia R . Antitumoral effect of HSV-tk suicide gene associated with ganciclovir in an experimental model of head and neck epidermoid carcinoma. Acta Otorrinolaringol Esp 2002; 53: 448–454.

    Article  CAS  PubMed  Google Scholar 

  46. Wang A, Huang H, Li S . Therapeutic effect of AdCMVCD/5-FC system and metabolism of 5-FC in the treatment of human tongue squamous cell carcinoma. Chin Med J (Engl) 2003; 116: 248–252.

    CAS  Google Scholar 

  47. Harrington KJ, Nutting CM, Pandha HS . Gene therapy for head and neck cancer. Cancer Metastasis Rev 2005; 24: 147–164.

    Article  CAS  PubMed  Google Scholar 

  48. O'Malley Jr BW, Li D, McQuone SJ, Ralston R . Combination nonviral interleukin-2 gene immunotherapy for head and neck cancer: from bench top to bedside. Laryngoscope 2005; 115: 391–404.

    Article  CAS  PubMed  Google Scholar 

  49. Xian J, Yang H, Lin Y, Liu S . Combination nonviral murine interleukin 2 and interleukin 12 gene therapy and radiotherapy for head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 2005; 131: 1079–1085.

    Article  PubMed  Google Scholar 

  50. Corban-Wilhelm H, Becker G, Bauder-Wust U, Greulich D, Debus J . Cytosine deaminase versus thymidine kinase: a comparison of the antitumor activity. Clin Exp Med 2003; 3: 150–156.

    Article  CAS  PubMed  Google Scholar 

  51. Trinh QT, Austin EA, Murray DM, Knick VC, Huber BE . Enzyme/prodrug gene therapy: comparison of cytosine deaminase/5-fluorocytosine versus thymidine kinase/ganciclovir enzyme/prodrug systems in a human colorectal carcinoma cell line. Cancer Res 1995; 55: 4808–4812.

    CAS  PubMed  Google Scholar 

  52. Hall SJ, Sanford MA, Atkinson G, Chen SH . Induction of potent antitumor natural killer cell activity by herpes simplex virus-thymidine kinase and ganciclovir therapy in an orthotopic mouse model of prostate cancer. Cancer Res 1998; 58: 3221–3225.

    CAS  PubMed  Google Scholar 

  53. Gagandeep S, Brew R, Green B, Christmas SE, Klatzmann D, Poston GJ et al. Prodrug-activated gene therapy: involvement of an immunological component in the ‘bystander effect’. Cancer Gene Ther 1996; 3: 83–88.

    CAS  PubMed  Google Scholar 

  54. Bertin S, Neves S, Gavelli A, Baque P, Brossette N, Simoes S et al. Cellular and molecular events associated with the antitumor response induced by the cytosine deaminase/5-fluorocytosine suicide gene therapy system in a rat liver metastasis model. Cancer Gene Ther 2007; 14: 858–866.

    Article  CAS  PubMed  Google Scholar 

  55. Vile RG, Castleden S, Marshall J, Camplejohn R, Upton C, Chong H . Generation of an anti-tumour immune response in a non-immunogenic tumour: HSVtk killing in vivo stimulates a mononuclear cell infiltrate and a Th1-like profile of intratumoural cytokine expression. Int J Cancer 1997; 71: 267–274.

    Article  CAS  PubMed  Google Scholar 

  56. Bramson JL, Bodner CA, Graham RW . Activation of host antitumoral responses by cationic lipid/DNA complexes. Cancer Gene Ther 2000; 7: 353–359.

    Article  CAS  PubMed  Google Scholar 

  57. Tan Y, Li S, Pitt BR, Huang L . The inhibitory role of CpG immunostimulatory motifs in cationic lipid vector-mediated transgene expression in vivo. Hum Gene Ther 1999; 10: 2153–2161.

    Article  CAS  PubMed  Google Scholar 

  58. Yew NS, Zhao H, Wu IH, Song A, Tousignant JD, Przybylska M et al. Reduced inflammatory response to plasmid DNA vectors by elimination and inhibition of immunostimulatory CpG motifs. Mol Ther 2000; 1: 255–262.

    Article  CAS  PubMed  Google Scholar 

  59. Scheule RK . The role of CpG motifs in immunostimulation and gene therapy. Adv Drug Deliv Rev 2000; 44: 119–134.

    Article  CAS  PubMed  Google Scholar 

  60. Waldmann TA . The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 2006; 6: 595–601.

    Article  CAS  PubMed  Google Scholar 

  61. Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 1995; 378: 88–91.

    Article  CAS  PubMed  Google Scholar 

  62. Gri G, Chiodoni C, Gallo E, Stoppacciaro A, Liew FY, Colombo MP . Antitumor effect of interleukin (IL)-12 in the absence of endogenous IFN-(gamma): a role for intrinsic tumor immunogenicity and IL-15. Cancer Res 2002; 62: 4390–4397.

    CAS  PubMed  Google Scholar 

  63. Brandacher G, Winkler C, Schroecksnadel K, Margreiter R, Fuchs D . Antitumoral activity of interferon-gamma involved in impaired immune function in cancer patients. Curr Drug Metab 2006; 7: 599–612.

    Article  CAS  PubMed  Google Scholar 

  64. Vicari AP, Caux C . Chemokines in cancer. Cytokine Growth Factor Rev 2002; 13: 143–154.

    Article  CAS  PubMed  Google Scholar 

  65. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A . Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19: 683–765.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Sílvia Neves is the recipient of a fellowship from Portuguese Foundation for Science and Technology (FCT) (SFRH/BD/8711/2002). This work was supported by grants from FCT (POCTI/CVT/44854/2002) and (PTDC/BIO/65627/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M C Pedroso de Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neves, S., Faneca, H., Bertin, S. et al. Transferrin lipoplex-mediated suicide gene therapy of oral squamous cell carcinoma in an immunocompetent murine model and mechanisms involved in the antitumoral response. Cancer Gene Ther 16, 91–101 (2009). https://doi.org/10.1038/cgt.2008.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.60

Keywords

This article is cited by

Search

Quick links