Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Locked nucleic acid inhibits miR-92a-3p in human colorectal cancer, induces apoptosis and inhibits cell proliferation

Abstract

MicroRNAs (miRNAs) are a type of small noncoding RNAs that have a vital role in basic biological processes such as cellular growth, division and apoptosis. A change in the expression of miRNAs can induce many diseases. Recently, the role of miRNA in some of the cancers as a tumor suppressor and oncogene has been recognized. Several studies have proved that miR-92a-3p acts as an oncogene in colorectal cancer (CRC). We studied CRC by inhibiting miR-92a-3p in SW48 cells (human colorectal cancer cell line) that were transfected with locked nucleic acid (LNA). At different times, the expression level of miR-92a-3p, cell vitality, apoptosis and necrosis were studied by qRT-PCR, MTT, Annexin-V and propidiumiodide. Our results showed that the expression of miR-92a-3p and proliferation of SW48 cells were decreased, and also a high percentage of SW48 cells were exposed to apoptosis and necrosis (P0.005). Our study showed that the inhibition of miR-92a-3p with LNA inhibited cell proliferation and induced apoptosis and necrosis in CRC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Brunet Vega A, Pericay C, Moya I, Ferrer A, Dotor E, Pisa A et al. microRNA expression profile in stage III colorectal cancer: circulating miR-18a and miR-29a as promising biomarkers. Oncol Rep 2013; 30: 320–326.

    Article  Google Scholar 

  2. Goodall EF, Heath PR, Bandmann O, Kirby J, Shaw PJ . Neuronal dark matter: the emerging role of microRNAs in neurodegeneration. Front Cell Neurosci 2013; 7: 178.

    Article  Google Scholar 

  3. Iaconetti C, Gareri C, Polimeni A, Indolfi C . Non-coding RNAs: the "dark matter" of cardiovascular pathophysiology. Int J Mol Sci 2013; 14: 19987–20018.

    Article  Google Scholar 

  4. van Wijnen AJ, van de Peppel J, van Leeuwen JP, Lian JB, Stein GS, Westendorf JJ et al. MicroRNA functions in osteogenesis and dysfunctions in osteoporosis. Curr Osteoporos Rep 2013; 11: 72–82.

    Article  Google Scholar 

  5. Zampetaki A, Mayr M . MicroRNAs in vascular and metabolic disease. Circ Res 2012; 110: 508–522.

    Article  CAS  Google Scholar 

  6. Liu F, Yang L, Zhou X, Sheng W, Cai S, Liu L et al. Clinicopathological and genetic features of Chinese hereditary nonpolyposis colorectal cancer (HNPCC). Med Oncol 2014; 31: 1–7.

    Google Scholar 

  7. Stewart BW, Wild C . International Agency for Research on Cancer, World Health Organization. World Cancer Report, 2014.

  8. Yamada N, Nakagawa Y, Tsujimura N, Kumazaki M, Noguchi S, Mori T et al. Role of intracellular and extracellular microRNA-92a in colorectal cancer. Transl Oncol 2013; 6: 482–492.

    Article  Google Scholar 

  9. Chang YY, Kuo WH, Hung JH, Lee CY, Lee YH, Chang YC et al. Deregulated microRNAs in triple-negative breast cancer revealed by deep sequencing. Mol Cancer 2015; 14: 36.

    Article  Google Scholar 

  10. Koga Y, Yamazaki N, Matsumura Y . Fecal biomarker for colorectal cancer diagnosis. Rinsho byori. Jpn J Clin Pathol 2015; 63: 361–368.

    CAS  Google Scholar 

  11. Neerincx M, Sie DL, van de Wiel MA, van Grieken NC, Burggraaf JD, Dekker H et al. MiR expression profiles of paired primary colorectal cancer and metastases by next-generation sequencing. Oncogenesis 2015; 4: e170.

    Article  CAS  Google Scholar 

  12. Germini DE, Mader AM, Gomes LG, Teodoro TR, Franco MI, Waisberg J . Detection of DNA repair protein in colorectal cancer of patients up to 50 years old can increase the identification of Lynch syndrome? Tumour Biol 2015 (e-pub ahead of print).

  13. Masuda M, Sawa M, Yamada T . Therapeutic targets in the Wnt signaling pathway: feasibility of targeting TNIK in colorectal cancer. Pharmacol Ther 2015; 156: 1–9.

    Article  CAS  Google Scholar 

  14. Arques O, Chicote I, Puig I, Tenbaum SP, Argiles G, Dienstmann R et al. Tankyrase inhibition blocks Wnt/beta-catenin pathway and reverts resistance to PI3K and AKT inhibitors in the treatment of colorectal cancer. Clin Cancer Res 2015; 22: 644–656.

    Article  Google Scholar 

  15. Lv XB, Zhang X, Deng L, Jiang L, Meng W, Lu Z et al. MiR-92a mediates AZD6244 induced apoptosis and G1-phase arrest of lymphoma cells by targeting Bim. Cell Biol Int 2014; 38: 435–443.

    Article  CAS  Google Scholar 

  16. Mosakhani N, Sarhadi VK, Borze I, Karjalainen-Lindsberg ML, Sundstrom J, Ristamaki R et al. MicroRNA profiling differentiates colorectal cancer according to KRAS status. Genes Chromosomes Cancer 2012; 51: 1–9.

    Article  CAS  Google Scholar 

  17. Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P et al. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging 2011; 3: 192–222.

    Article  CAS  Google Scholar 

  18. Liu C, Zhang Y, Chen H, Jiang L, Xiao D . Function analysis of rs9589207 polymorphism in miR-92a in gastric cancer. Tumour Biol 2015 (e-pub ahead of print).

  19. Ren P, Gong F, Zhang Y, Jiang J, Zhang H . MicroRNA-92a promotes growth, metastasis, and chemoresistance in non-small cell lung cancer cells by targeting PTEN. Tumour Biol 2015 (e-pub ahead of print).

  20. Zhao JY, Wang F, Li Y, Zhang XB, Yang L, Wang W et al. Five miRNAs considered as molecular targets for predicting esophageal cancer. Med Sci Monit 2015; 21: 3222–3230.

    Article  CAS  Google Scholar 

  21. Chen ZL, Zhao XH, Wang JW, Li BZ, Wang Z, Sun J et al. microRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin. JfBiol Chem 2011; 286: 10725–10734.

    Article  CAS  Google Scholar 

  22. Li M, Guan X, Sun Y, Mi J, Shu X, Liu F et al. miR-92a family and their target genes in tumorigenesis and metastasis. Exp Cell Res 2014; 323: 1–6.

    Article  CAS  Google Scholar 

  23. Schee K, Boye K, Abrahamsen TW, Fodstad O, Flatmark K . Clinical relevance of microRNA miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-145 in colorectal cancer. BMC Cancer 2012; 12: 505.

    Article  CAS  Google Scholar 

  24. Sharifi M, Salehi R, Gheisari Y, Kazemi M . Inhibition of microRNA miR-92a induces apoptosis and inhibits cell proliferation in human acute promyelocytic leukemia through modulation of p63 expression. Mol Biol Rep 2014; 41: 2799–2808.

    Article  CAS  Google Scholar 

  25. Luo X, Burwinkel B, Tao S, Brenner H . MicroRNA signatures: novel biomarker for colorectal cancer? Cancer Epidemiol Biomarkers Prev 2011; 20: 1272–1286.

    Article  CAS  Google Scholar 

  26. Wang J, Huang SK, Zhao M, Yang M, Zhong JL, Gu YY et al. Identification of a circulating microRNA signature for colorectal cancer detection. PLoS One 2014; 9: e87451.

    Article  Google Scholar 

  27. Yang W, Dou C, Wang Y, Jia Y, Li C, Zheng X et al. MicroRNA-92a contributes to tumor growth of human hepatocellular carcinoma by targeting FBXW7. Oncol Rep 2015; 34: 2576–2584.

    Article  CAS  Google Scholar 

  28. Xiaoli Z, Yawei W, Lianna L, Haifeng L, Hui Z . Screening of target genes and regulatory function of miRNAs as prognostic indicators for prostate cancer. Med Sci Monit 2015; 21: 3748–3759.

    Article  Google Scholar 

  29. Zhong C, Li MY, Chen ZY, Cheng HK, Hu ML, Ruan YL et al. MicroRNA-200a inhibits epithelial-mesenchymal transition in human hepatocellular carcinoma cell line. Int J Clin Exp Pathol 2015; 8: 9922–9931.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sharifi M, Salehi R . Blockage of miR-92a-3p with locked nucleic acid induces apoptosis and prevents cell proliferation in human acute megakaryoblastic leukemia. Cancer Gene Ther 2015; 23: 29–35.

    Article  Google Scholar 

  31. Taccioli C, Garofalo M, Chen H, Jiang Y, Tagliazucchi GM, Di Leva G et al. Repression of esophageal neoplasia and inflammatory signaling by anti-miR-31 delivery in vivo. J Natl Cancer Inst 2015; 107: 11.

    Article  Google Scholar 

  32. Petrulea MS, Plantinga TS, Smit JW, Georgescu CE, Netea-Maier RT . PI3K/Akt/mTOR: a promising therapeutic target for non-medullary thyroid carcinoma. Cancer Treat Rev 2015; 41: 707–713.

    Article  CAS  Google Scholar 

  33. Rao E, Jiang C, Ji M, Huang X, Iqbal J, Lenz G et al. The miRNA-17 approximately 92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation. Leukemia 2012; 26: 1064–1072.

    Article  CAS  Google Scholar 

  34. Wang T, Seah S, Loh X, Chan CW, Hartman M, Goh BC et al. Simvastatin-induced breast cancer cell death and deactivation of PI3K/Akt and MAPK/ERK signalling are reversed by metabolic products of the mevalonate pathway. Oncotarget 2015; 7: 2532–2544.

    PubMed Central  Google Scholar 

  35. Voorham QJ, Janssen J, Tijssen M, Snellenberg S, Mongera S, van Grieken NC et al. Promoter methylation of Wnt-antagonists in polypoid and nonpolypoid colorectal adenomas. BMC cancer 2013; 13: 603.

    Article  Google Scholar 

  36. Ye L, Yuan G, Xu F, Sun Y, Chen Z, Chen M et al. The small-molecule compound BM-1197 inhibits the antiapoptotic regulators Bcl-2/Bcl-xL and triggers apoptotic cell death in human colorectal cancer cells. Tumour Biol 2015; 36: 3447–3455.

    Article  CAS  Google Scholar 

  37. Guo L, Xu J, Qi J, Zhang L, Wang J, Liang J et al. MicroRNA-17-92a upregulation by estrogen leads to Bim targeting and inhibition of osteoblast apoptosis. JfCell Sci 2013; 126 (Part 4): 978–988.

    Article  CAS  Google Scholar 

  38. Pernaute B, Spruce T, Smith KM, Sanchez-Nieto JM, Manzanares M, Cobb B et al. MicroRNAs control the apoptotic threshold in primed pluripotent stem cells through regulation of BIM. Genes Dev 2014; 28: 1873–1878.

    Article  CAS  Google Scholar 

  39. Fang L, Cai J, Chen B, Wu S, Li R, Xu X et al. Aberrantly expressed miR-582-3p maintains lung cancer stem cell-like traits by activating Wnt/beta-catenin signalling. Nat Commun 2015; 6: 8640.

    Article  CAS  Google Scholar 

  40. Farkas SA, Vymetalkova V, Vodickova L, Vodicka P, Nilsson TK . DNA methylation changes in genes frequently mutated in sporadic colorectal cancer and in the DNA repair and Wnt/beta-catenin signaling pathway genes. Epigenomics 2014; 6: 179–191.

    Article  CAS  Google Scholar 

  41. Zavesky L, Jandakova E, Turyna R, Langmeierova L, Weinberger V, Zaveska Drabkova L et al. Evaluation of cell-free urine microRNAs expression for the use in diagnosis of ovarian and endometrial cancers. A pilot study. Pathol Oncol Res 2015; 21: 1027–1035.

    Article  CAS  Google Scholar 

  42. Ren XL, He GY, Li XM, Men H, Yi LZ, Lu GF et al. MicroRNA-206 functions as a tumor suppressor in colorectal cancer by targeting FMNL2. J Cancer Res Clin Oncol 2015; 142: 581–592.

    Article  Google Scholar 

  43. Chen Z, Liu S, Tian L, Wu M, Ai F, Tang W et al. miR-124 and miR-506 inhibit colorectal cancer progression by targeting DNMT3B and DNMT1. Oncotarget 2015; 6: 38139–38150.

    PubMed  PubMed Central  Google Scholar 

  44. Lv LV, Zhou J, Lin C, Hu G, Yi LU, Du J et al. DNA methylation is involved in the aberrant expression of miR-133b in colorectal cancer cells. Oncol Lett 2015; 10: 907–912.

    Article  CAS  Google Scholar 

  45. Li P, Xue WJ, Feng Y, Mao QS . MicroRNA-205 functions as a tumor suppressor in colorectal cancer by targeting cAMP responsive element binding protein 1 (CREB1). Am JfTransl Res 2015; 7: 2053–2059.

    CAS  Google Scholar 

  46. Yau TO, Wu CW, Tang CM, Chen Y, Fang J, Dong Y et al. microRNA-20a in human faeces as a non-invasive biomarker for colorectal cancer. Oncotarget 2015; 7: 1559–1568.

    PubMed Central  Google Scholar 

  47. Li HT, Zhang H, Chen Y, Liu XF, Qian J . MiR-423-3p enhances cell growth through inhibition of p21Cip1/Waf1 in colorectal cancer. Cell Physiol Biochem 2015; 37: 1044–1054.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was conducted with the financial support of Isfahan University of Medical Sciences (IRAN) through grant number 393824.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Sharifi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, S., Sharifi, M. & Salehi, R. Locked nucleic acid inhibits miR-92a-3p in human colorectal cancer, induces apoptosis and inhibits cell proliferation. Cancer Gene Ther 23, 199–205 (2016). https://doi.org/10.1038/cgt.2016.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2016.10

This article is cited by

Search

Quick links