Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene-expression profiling to predict responsiveness to immunotherapy

Abstract

Recent clinical successes with immunotherapy have resulted in expanding indications for cancer therapy. To enhance antitumor immune responses, and to better choose specific strategies matched to patient and tumor characteristics, genomic-driven precision immunotherapy will be necessary. Herein, we explore the role that tumor gene-expression profiling (GEP) may have in the prediction of an immunotherapeutic response. Genetic markers associated with response to immunotherapy are addressed as they pertain to the tumor genomic landscape, the extent of DNA damage, tumor mutational load and tumor-specific neoantigens. Furthermore, genetic markers associated with resistance to checkpoint blockade and relapse are reviewed. Finally, the utility of GEP to identify new tumor types for immunotherapy and implications for combinatorial strategies are summarized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Collins FS, Varmus H . A new initiative on precision medicine. N Engl J Med 2015; 372: 793–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Garraway LA . Genomics-driven oncology: framework for an emerging paradigm. J Clin Oncol 2013; 31: 1806–1814.

    Article  PubMed  Google Scholar 

  3. Maker AV . Precise identification of immunotherapeutic targets for solid malignancies using clues within the tumor microenvironment-Evidence to turn on the LIGHT. Oncoimmunology 2016; 5: e1069937.

    Article  PubMed  CAS  Google Scholar 

  4. Maker AV, Ito H, Mo Q, Weisenberg E, Qin LX, Turcotte S et al. Genetic evidence that intratumoral T-cell proliferation and activation are associated with recurrence and survival in patients with resected colorectal liver metastases. Cancer Immunol Res 2015; 3: 380–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sharma P, Allison JP . The future of immune checkpoint therapy. Science 2015; 348: 56–61.

    Article  CAS  PubMed  Google Scholar 

  6. Sunshine J, Taube JM . PD-1/PD-L1 inhibitors. Curr Opin Pharmacol 2015; 23: 32–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brahmer JR . Harnessing the immune system for the treatment of non-small-cell lung cancer. J Clin Oncol 2013; 31: 1021–1028.

    Article  CAS  PubMed  Google Scholar 

  8. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013; 369: 122–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 2015; 33: 1889–1894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015; 372: 2018–2028.

    Article  PubMed  Google Scholar 

  11. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 2015; 372: 2521–2532.

    Article  CAS  PubMed  Google Scholar 

  12. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015; 373: 23–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366: 2443–2454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 2004; 351: 2159–2169.

    Article  CAS  PubMed  Google Scholar 

  15. Kratz JR, He J, Van Den Eeden SK, Zhu ZH, Gao W, Pham PT et al. A practical molecular assay to predict survival in resected non-squamous, non-small-cell lung cancer: development and international validation studies. Lancet 2012; 379: 823–832.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004; 351: 2817–2826.

    Article  CAS  PubMed  Google Scholar 

  17. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530–536.

    Article  CAS  PubMed  Google Scholar 

  18. Baker JB, Dutta D, Watson D, Maddala T, Munneke BM, Shak S et al. Tumour gene expression predicts response to cetuximab in patients with KRAS wild-type metastatic colorectal cancer. Br J Cancer 2011; 104: 488–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim HK, Choi IJ, Kim CG, Kim HS, Oshima A, Yamada Y et al. Three-gene predictor of clinical outcome for gastric cancer patients treated with chemotherapy. Pharmacogenomics J 2012; 12: 119–127.

    Article  CAS  PubMed  Google Scholar 

  20. Das R, Verma R, Sznol M, Boddupalli CS, Gettinger SN, Kluger H et al. Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo. J Immunol 2015; 194: 950–959.

    Article  CAS  PubMed  Google Scholar 

  21. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313: 1960–1964.

    Article  CAS  PubMed  Google Scholar 

  22. Weiss GR, Grosh WW, Chianese-Bullock KA, Zhao Y, Liu H, Slingluff CL Jr. et al. Molecular insights on the peripheral and intratumoral effects of systemic high-dose rIL-2 (aldesleukin) administration for the treatment of metastatic melanoma. Clin Cancer Res 2011; 17: 7440–7450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Messina JL, Fenstermacher DA, Eschrich S, Qu X, Berglund AE, Lloyd MC et al. 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep 2012; 2: 765.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ribas A, Robert C, Hodi FS, Wolchok JD, Joshua AM, Hwu WJ et al. Association of response to programmed death receptor 1 (PD-1) blockade with pembrolizumab (MK-3475) with an interferon-inflammatory immune gene signature. J Clin Oncol 2015; 33 (suppl; abstr 3001).

    Article  Google Scholar 

  25. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 2016; 387: 1837–1846.

    Article  CAS  PubMed  Google Scholar 

  26. Ulloa-Montoya F, Louahed J, Dizier B, Gruselle O, Spiessens B, Lehmann FF et al. Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy. J Clin Oncol 2013; 31: 2388–2395.

    Article  CAS  PubMed  Google Scholar 

  27. Vansteenkiste JF, Cho BC, Vanakesa T, De Pas T, Zielinski M, Kim MS et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2016; 17: 822–835.

    Article  CAS  PubMed  Google Scholar 

  28. Giaccone G, Bazhenova LA, Nemunaitis J, Tan M, Juhasz E, Ramlau R et al. A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer. Eur J Cancer 2015; 51: 2321–2329.

    Article  CAS  PubMed  Google Scholar 

  29. Butts C, Socinski MA, Mitchell PL, Thatcher N, Havel L, Krzakowski M et al. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol 2014; 15: 59–68.

    Article  CAS  PubMed  Google Scholar 

  30. Rosenberg SA, Yang JC, Restifo NP . Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10: 909–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Topalian SL, Drake CG, Pardoll DM . Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 2015; 27: 450–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maker AV, Attia P, Rosenberg SA . Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J Immunol 2005; 175: 7746–7754.

    Article  CAS  PubMed  Google Scholar 

  33. Hegde PS, Karanikas V, Evers S . The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin Cancer Res 2016; 22: 1865–1874.

    Article  CAS  PubMed  Google Scholar 

  34. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014; 515: 563–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N . Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 2015; 160: 48–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ng Tang D, Shen Y, Sun J, Wen S, Wolchok JD, Yuan J et al. Increased frequency of ICOS+ CD4 T cells as a pharmacodynamic biomarker for anti-CTLA-4 therapy. Cancer Immunol Res 2013; 1: 229–234.

    Article  PubMed  CAS  Google Scholar 

  37. Ji RR, Chasalow SD, Wang L, Hamid O, Schmidt H, Cogswell J et al. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother 2012; 61: 1019–1031.

    Article  CAS  PubMed  Google Scholar 

  38. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 2015; 350: 207–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 2014; 20: 5064–5074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014; 515: 568–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 2014; 515: 558–562.

    Article  CAS  PubMed  Google Scholar 

  42. Patel SP, Kurzrock R . PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 2015; 14: 847–856.

    Article  CAS  PubMed  Google Scholar 

  43. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 2015; 372: 311–319.

    Article  PubMed  CAS  Google Scholar 

  44. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 2015; 12: 453–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 2015; 21: 938–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol 2014; 232: 199–209.

    Article  CAS  PubMed  Google Scholar 

  47. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD et al. PD-1 Blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; 372: 2509–2520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Johnson DB, Estrada MV, Salgado R, Sanchez V, Doxie DB, Opalenik SR et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun 2016; 7: 10582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Leone P, Shin EC, Perosa F, Vacca A, Dammacco F, Racanelli V . MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 2013; 105: 1172–1187.

    Article  CAS  PubMed  Google Scholar 

  50. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K et al. Mutational processes molding the genomes of 21 breast cancers. Cell 2012; 149: 979–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV et al. Signatures of mutational processes in human cancer. Nature 2013; 500: 415–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR . Deciphering signatures of mutational processes operative in human cancer. Cell Rep 2013; 3: 246–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schutte M, da Costa LT, Hahn SA, Moskaluk C, Hoque AT, Rozenblum E et al. Identification by representational difference analysis of a homozygous deletion in pancreatic carcinoma that lies within the BRCA2 region. Proc Natl Acad Sci USA 1995; 92: 5950–5954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Slater EP, Langer P, Niemczyk E, Strauch K, Butler J, Habbe N et al. PALB2 mutations in European familial pancreatic cancer families. Clin Genet 2010; 78: 490–494.

    Article  CAS  PubMed  Google Scholar 

  55. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014; 371: 2189–2199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015; 348: 124–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dudley JC, Lin MT, Le DT, Eshleman JR . Microsatellite Instability as a biomarker for PD-1 blockade. Clin Cancer Res 2016; 22: 813–820.

    Article  CAS  PubMed  Google Scholar 

  58. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 2016; 165: 35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Van Allen EM, Golay HG, Liu Y, Koyama S, Wong K, Taylor-Weiner A et al. Long-term benefit of PD-L1 blockade in lung cancer associated with JAK3 activation. Cancer Immunol Res 2015; 3: 855–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 2011; 364: 2517–2526.

    Article  CAS  PubMed  Google Scholar 

  61. Maker AV, Phan GQ, Attia P, Yang JC, Sherry RM, Topalian SL et al. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann Surg Oncol 2005; 12: 1005–1016.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Maker AV, Yang JC, Sherry RM, Topalian SL, Kammula US, Royal RE et al. Intrapatient dose escalation of anti-CTLA-4 antibody in patients with metastatic melanoma. J Immunother 2006; 29: 455–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Johnson DB, Lovly CM, Flavin M, Panageas KS, Ayers GD, Zhao Z et al. Impact of NRAS mutations for patients with advanced melanoma treated with immune therapies. Cancer Immunol Res 2015; 3: 288–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schumacher TN, Schreiber RD . Neoantigens in cancer immunotherapy. Science 2015; 348: 69–74.

    Article  CAS  PubMed  Google Scholar 

  65. Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, Liu JF et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 2016; 7: 13587–13598.

    Article  PubMed  PubMed Central  Google Scholar 

  66. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016; 351: 1463–1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Burrell RA, McGranahan N, Bartek J, Swanton C . The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013; 501: 338–345.

    Article  CAS  PubMed  Google Scholar 

  68. van Rooij N, van Buuren MM, Philips D, Velds A, Toebes M, Heemskerk B et al. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 2013; 31: e439–e442.

    Article  PubMed  Google Scholar 

  69. Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ, Nelson BH et al. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res 2014; 24: 743–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 2016; 7: 10501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 2016; 6: 202–216.

    Article  CAS  PubMed  Google Scholar 

  72. Carbognin L, Pilotto S, Milella M, Vaccaro V, Brunelli M, Calio A et al. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS One 2015; 10: e0130142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hugo W, Shi H, Sun L, Piva M, Song C, Kong X et al. Non-genomic and Immune evolution of melanoma acquiring MAPKi resistance. Cell 2015; 162: 1271–1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 2016; 375: 819–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA . Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst 1996; 88: 100–108.

    Article  CAS  PubMed  Google Scholar 

  76. Corrales L, McWhirter SM, Dubensky TW Jr., Gajewski TF . The host STING pathway at the interface of cancer and immunity. J Clin Invest 2016; 126: 2404–2411.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhai L, Spranger S, Binder DC, Gritsina G, Lauing KL, Giles FJ et al. Molecular pathways: targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin Cancer Res 2015; 21: 5427–5433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Angelova M, Charoentong P, Hackl H, Fischer ML, Snajder R, Krogsdam AM et al. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol 2015; 16: 64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016; 531: 47–52.

    Article  CAS  PubMed  Google Scholar 

  80. Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 2016; 387: 1909–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA 2013; 110: 20212–20217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Steele CW, Karim SA, Leach JD, Bailey P, Upstill-Goddard R, Rishi L et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 2016; 29: 832–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pozzi C, Cuomo A, Spadoni I, Magni E, Silvola A, Conte A et al. The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nat Med 2016; 22: 624–631.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AVM is supported by NIH/NCI K08-CA190855.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A V Maker.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamieson, N., Maker, A. Gene-expression profiling to predict responsiveness to immunotherapy. Cancer Gene Ther 24, 134–140 (2017). https://doi.org/10.1038/cgt.2016.63

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2016.63

This article is cited by

Search

Quick links