Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The epigenetics of autoimmunity

Abstract

The etiology of autoimmune diseases remains largely unknown. Concordance rates in monozygotic twins are lower than 50% while genome-wide association studies propose numerous significant associations representing only a minority of patients. These lines of evidence strongly support other complementary mechanisms involved in the regulation of genes expression ultimately causing overt autoimmunity. Alterations in the post-translational modification of histones and DNA methylation are the two major epigenetic mechanisms that may potentially cause a breakdown of immune tolerance and the perpetuation of autoimmune diseases. In recent years, several studies both in clinical settings and experimental models proposed that the epigenome may hold the key to a better understanding of autoimmunity initiation and perpetuation. More specifically, data support the impact of epigenetic changes in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and other autoimmune diseases, in some cases based on mechanistical observations. We herein discuss what we currently know and what we expect will come in the next future. Ultimately, epigenetic treatments already being used in oncology may soon prove beneficial also in autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Shoenfeld Y, Selmi C, Zimlichman E, Gershwin ME . The autoimmunologist: geoepidemiology, a new center of gravity, and prime time for autoimmunity. J Autoimmun 2008; 31: 325–330.

    Article  PubMed  Google Scholar 

  2. Singleton AB, Hardy J, Traynor BJ, Houlden H . Towards a complete resolution of the genetic architecture of disease. Trends Genet 2010; 26: 438–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ballestar E . Epigenetics lessons from twins: prospects for autoimmune disease. Clin Rev Allergy Immunol 2010; 39: 30–41.

    Article  CAS  PubMed  Google Scholar 

  4. Breton CV, Salam MT, Vora H, Gauderman WJ, Gilliland FD . Genetic variation in the glutathione synthesis pathway, air pollution, and children's lung function growth. Am J Respir Crit Care Med 2010.

  5. Zhang H, Zhu Z, Meadows GG . Chronic alcohol consumption decreases the percentage and number of NK cells in the peripheral lymph nodes and exacerbates B16BL6 melanoma metastasis into the draining lymph nodes. Cell Immunol 2010.

  6. Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH et al. Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 2009; 179: 572–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tarantini L, Bonzini M, Apostoli P, Pegoraro V, Bollati V, Marinelli B et al. Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environ Health Perspect 2009; 117: 217–222.

    Article  CAS  PubMed  Google Scholar 

  8. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005; 102: 10604–10609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ . Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997; 389: 251–260.

    Article  CAS  PubMed  Google Scholar 

  10. Arents G, Moudrianakis EN . The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc Natl Acad Sci USA 1995; 92: 11170–11174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zlatanova J, Bishop TC, Victor JM, Jackson V, van Holde K . The nucleosome family: dynamic and growing. Structure 2009; 17: 160–171.

    Article  CAS  PubMed  Google Scholar 

  12. Strahl BD, Allis CD . The language of covalent histone modifications. Nature 2000; 403: 41–45.

    Article  CAS  PubMed  Google Scholar 

  13. Turner BM . Histone acetylation and an epigenetic code. Bioessays 2000; 22: 836–845.

    Article  CAS  PubMed  Google Scholar 

  14. Yoshida M, Matsuyama A, Komatsu Y, Nishino N . From discovery to the coming generation of histone deacetylase inhibitors. Curr Med Chem 2003; 10: 2351–2358.

    Article  CAS  PubMed  Google Scholar 

  15. Yang XJ . The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 2004; 32: 959–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gregory PD, Wagner K, Horz W . Histone acetylation and chromatin remodeling. Exp Cell Res 2001; 265: 195–202.

    Article  CAS  PubMed  Google Scholar 

  17. Kalkhoven E . CBP and p300: HATs for different occasions. Biochem Pharmacol 2004; 68: 1145–1155.

    Article  CAS  PubMed  Google Scholar 

  18. Roth SY, Denu JM, Allis CD . Histone acetyltransferases. Annu Rev Biochem 2001; 70: 81–120.

    Article  CAS  PubMed  Google Scholar 

  19. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB . Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003; 370: 737–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Michan S, Sinclair D . Sirtuins in mammals: insights into their biological function. Biochem J 2007; 404: 1–13.

    Article  CAS  PubMed  Google Scholar 

  21. Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF . Histone deacetylases: unique players in shaping the epigenetic histone code. Ann NY Acad Sci 2003; 983: 84–100.

    Article  CAS  PubMed  Google Scholar 

  22. Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T . Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001; 410: 116–120.

    Article  CAS  PubMed  Google Scholar 

  23. Bauer UM, Daujat S, Nielsen SJ, Nightingale K, Kouzarides T . Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep 2002; 3: 39–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC et al. Active genes are tri-methylated at K4 of histone H3. Nature 2002; 419: 407–411.

    Article  CAS  PubMed  Google Scholar 

  25. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 2004; 18: 1251–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kouzarides T . Chromatin modifications and their function. Cell 2007; 128: 693–705.

    Article  CAS  PubMed  Google Scholar 

  27. Wysocka J, Allis CD, Coonrod S . Histone arginine methylation and its dynamic regulation. Front Biosci 2006; 11: 344–355.

    Article  CAS  PubMed  Google Scholar 

  28. Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT et al. Regulation of transcription by a protein methyltransferase. Science 1999; 284: 2174–2177.

    Article  CAS  PubMed  Google Scholar 

  29. Strahl BD, Briggs SD, Brame CJ, Caldwell JA, Koh SS, Ma H et al. Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr Biol 2001; 11: 996–1000.

    Article  CAS  PubMed  Google Scholar 

  30. Wang H, Huang ZQ, Xia L, Feng Q, Erdjument-Bromage H, Strahl BD et al. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 2001; 293: 853–857.

    Article  CAS  PubMed  Google Scholar 

  31. Osley MA, Fleming AB, Kao CF . Histone ubiquitylation and the regulation of transcription. Results Probl Cell Differ 2006; 41: 47–75.

    Article  CAS  PubMed  Google Scholar 

  32. Chen ZJ . Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 2005; 7: 758–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gardiner-Garden M, Frommer M . CpG islands in vertebrate genomes. J Mol Biol 1987; 196: 261–282.

    Article  CAS  PubMed  Google Scholar 

  34. Illingworth RS, Bird AP . CpG islands—‘a rough guide’. FEBS Lett 2009; 583: 1713–1720.

    Article  CAS  PubMed  Google Scholar 

  35. Bird A . DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16: 6–21.

    Article  CAS  PubMed  Google Scholar 

  36. Baylin SB, Herman JG . DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 2000; 16: 168–174.

    Article  CAS  PubMed  Google Scholar 

  37. Chow J, Heard E . X inactivation and the complexities of silencing a sex chromosome. Curr Opin Cell Biol 2009; 21: 359–366.

    Article  CAS  PubMed  Google Scholar 

  38. Filipowicz W, Bhattacharyya SN, Sonenberg N . Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9: 102–114.

    Article  CAS  PubMed  Google Scholar 

  39. Ruan K, Fang X, Ouyang G . MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett 2009; 285: 116–126.

    Article  CAS  PubMed  Google Scholar 

  40. Strietholt S, Maurer B, Peters MA, Pap T, Gay S . Epigenetic modifications in rheumatoid arthritis. Arthritis Res Ther 2008; 10: 219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Iborra M, Bernuzzi F, Invernizzi P, Danese S . MicroRNAs in autoimmunity and inflammatory bowel disease: crucial regulators in immune response. Autoimmun Rev 2010.

  42. Sidhu SK, Minks J, Chang SC, Cotton AM, Brown CJ . X chromosome inactivation: heterogeneity of heterochromatin. Biochem Cell Biol 2008; 86: 370–379.

    Article  CAS  PubMed  Google Scholar 

  43. Wutz A . Xist function: bridging chromatin and stem cells. Trends Genet 2007; 23: 457–464.

    Article  CAS  PubMed  Google Scholar 

  44. Ozcelik T . X chromosome inactivation and female predisposition to autoimmunity. Clin Rev Allergy Immunol 2008; 34: 348–351.

    Article  PubMed  Google Scholar 

  45. Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su IH, Hannon G et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 2009; 136: 1122–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dupont C, Armant DR, Brenner CA . Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med 2009; 27: 351–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Egger G, Liang G, Aparicio A, Jones PA . Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429: 457–463.

    Article  CAS  PubMed  Google Scholar 

  48. Baguet A, Bix M . Chromatin landscape dynamics of the IL4–IL13 locus during T helper 1 and 2 development. Proc Natl Acad Sci USA 2004; 101: 11410–11415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mackay IR . Autoimmunity since the 1957 clonal selection theory: a little acorn to a large oak. Immunol Cell Biol 2008; 86: 67–71.

    Article  CAS  PubMed  Google Scholar 

  50. Ballestar E . Epigenetics lessons from twins: prospects for autoimmune disease. Clin Rev Allerg Immu 2010; 39: 30–41.

    Article  CAS  Google Scholar 

  51. Haque FN, Gottesman II, Wong AH . Not really identical: epigenetic differences in monozygotic twins and implications for twin studies in psychiatry. Am J Med Genet C Semin Med Genet 2009; 151C: 136–141.

    Article  CAS  PubMed  Google Scholar 

  52. Jarvinen P, Aho K . Twin studies in rheumatic diseases. Semin Arthritis Rheum 1994; 24: 19–28.

    Article  CAS  PubMed  Google Scholar 

  53. Clancy RM, Marion MC, Kaufman KM, Ramos PS, Adler A, Harley JB et al. Genome-wide association study of cardiac manifestations of neonatal lupus identifies candidate loci at 6p21 and 21q22. Arthritis Rheum 2010.

  54. Kariuki SN, Franek BS, Kumar AA, Arrington J, Mikolaitis RA, Utset TO et al. Trait-stratified genome-wide association study identifies novel and diverse genetic associations with serologic and cytokine phenotypes in systemic lupus erythematosus. Arthritis Res Ther 2010; 12: R151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Yang W, Shen N, Ye DQ, Liu Q, Zhang Y, Qian XX et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet 2010; 6: e1000841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 2009; 41: 1234–1237.

    Article  CAS  PubMed  Google Scholar 

  57. Cunninghame Graham DS . Genome-wide association studies in systemic lupus erythematosus: a perspective. Arthritis Res Ther 2009; 11: 119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Deapen D, Escalante A, Weinrib L, Horwitz D, Bachman B, Roy-Burman P et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum 1992; 35: 311–318.

    Article  CAS  PubMed  Google Scholar 

  59. Korganow AS, Knapp AM, Nehme-Schuster H, Soulas-Sprauel P, Poindron V, Pasquali JL et al. Peripheral B cell abnormalities in patients with systemic lupus erythematosus in quiescent phase: decreased memory B cells and membrane CD19 expression. J Autoimmun 2010; 34: 426–434.

    Article  CAS  PubMed  Google Scholar 

  60. Balada E, Ordi-Ros J, Vilardell-Tarres M . DNA methylation and systemic lupus erythematosus. Ann NY Acad Sci 2007; 1108: 27–136.

    Article  CAS  Google Scholar 

  61. Zhou Y, Lu Q . DNA methylation in T cells from idiopathic lupus and drug-induced lupus patients. Autoimmun Rev 2008; 7: 376–383.

    Article  CAS  PubMed  Google Scholar 

  62. Gorelik G, Richardson B . Aberrant T cell ERK pathway signaling and chromatin structure in lupus. Autoimmun Rev 2009; 8: 196–198.

    Article  CAS  PubMed  Google Scholar 

  63. Sawalha AH, Jeffries M, Webb R, Lu Q, Gorelik G, Ray D et al. Defective T-cell ERK signaling induces interferon-regulated gene expression and overexpression of methylation-sensitive genes similar to lupus patients. Genes Immun 2008; 9: 368–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M et al. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 1990; 33: 1665–1673.

    Article  CAS  PubMed  Google Scholar 

  65. Oelke K, Lu Q, Richardson D, Wu A, Deng C, Hanash S et al. Overexpression of CD70 and overstimulation of IgG synthesis by lupus T cells and T cells treated with DNA methylation inhibitors. Arthritis Rheum 2004; 50: 1850–1860.

    Article  CAS  PubMed  Google Scholar 

  66. Crow MK, Kirou KA . Regulation of CD40 ligand expression in systemic lupus erythematosus. Curr Opin Rheumatol 2001; 13: 361–369.

    Article  CAS  PubMed  Google Scholar 

  67. Lu Q, Wu A, Richardson BC . Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J Immunol 2005; 174: 6212–6219.

    Article  CAS  PubMed  Google Scholar 

  68. Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B . Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 2007; 179: 6352–6358.

    Article  CAS  PubMed  Google Scholar 

  69. Zhao M, Sun Y, Gao F, Wu X, Tang J, Yin H et al. Epigenetics and SLE: RFX1 downregulation causes CD11a and CD70 overexpression by altering epigenetic modifications in lupus CD4+ T cells. J Autoimmun 2010; 35: 58–69.

    Article  PubMed  CAS  Google Scholar 

  70. Yung RL, Richardson BC . Drug-induced lupus. Rheum Dis Clin North Am 1994; 20: 61–86.

    CAS  PubMed  Google Scholar 

  71. Batchelor JR, Welsh KI, Tinoco RM, Dollery CT, Hughes GR, Bernstein R et al. Hydralazine-induced systemic lupus erythematosus: influence of HLA-DR and sex on susceptibility. Lancet 1980; 1: 1107–1109.

    Article  CAS  PubMed  Google Scholar 

  72. Lee BH, Yegnasubramanian S, Lin X, Nelson WG . Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem 2005; 280: 40749–40756.

    Article  CAS  PubMed  Google Scholar 

  73. Deng C, Lu Q, Zhang Z, Rao T, Attwood J, Yung R et al. Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. Arthritis Rheum 2003; 48: 746–756.

    Article  CAS  PubMed  Google Scholar 

  74. Mazari L, Ouarzane M, Zouali M . Subversion of B lymphocyte tolerance by hydralazine, a potential mechanism for drug-induced lupus. Proc Natl Acad Sci USA 2007; 104: 6317–6322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Deng C, Kaplan MJ, Yang J, Ray D, Zhang Z, McCune WJ et al. Decreased Ras-mitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis Rheum 2001; 44: 397–407.

    Article  CAS  PubMed  Google Scholar 

  76. Richardson B . Effect of an inhibitor of DNA methylation on T cells. II. 5-azacytidine induces self-reactivity in antigen-specific T4+ cells. Hum Immunol 1986; 17: 456–470.

    Article  CAS  PubMed  Google Scholar 

  77. Alcolado JC, Laji K, Gill-Randall R . Maternal transmission of diabetes. Diabet Med 2002; 19: 89–98.

    Article  CAS  PubMed  Google Scholar 

  78. Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM . Direct observation of ligand recognition by T cells. Nature 2002; 419: 845–849.

    Article  CAS  PubMed  Google Scholar 

  79. Kaplan MJ, Lu Q, Wu A, Attwood J, Richardson B . Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4+ lupus T cells. J Immunol 2004; 172: 3652–3661.

    Article  CAS  PubMed  Google Scholar 

  80. Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, Rodriguez-Ubreva J et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 2010; 20: 170–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hu N, Qiu X, Luo Y, Yuan J, Li Y, Lei W et al. Abnormal histone modification patterns in lupus CD4+ T cells. J Rheumatol 2008; 35: 804–810.

    CAS  PubMed  Google Scholar 

  82. Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 2009; 60: 1065–1075.

    Article  CAS  PubMed  Google Scholar 

  83. Garcia BA, Busby SA, Shabanowitz J, Hunt DF, Mishra N . Resetting the epigenetic histone code in the MRL-lpr/lpr mouse model of lupus by histone deacetylase inhibition. J Proteome Res 2005; 4: 2032–2042.

    Article  CAS  PubMed  Google Scholar 

  84. Mishra N, Reilly CM, Brown DR, Ruiz P, Gilkeson GS . Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J Clin Invest 2003; 111: 539–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Reilly CM, Mishra N, Miller JM, Joshi D, Ruiz P, Richon VM et al. Modulation of renal disease in MRL/lpr mice by suberoylanilide hydroxamic acid. J Immunol 2004; 173: 4171–4178.

    Article  CAS  PubMed  Google Scholar 

  86. Forster N, Gallinat S, Jablonska J, Weiss S, Elsasser HP, Lutz W . p300 protein acetyltransferase activity suppresses systemic lupus erythematosus-like autoimmune disease in mice. J Immunol 2007; 178: 6941–6948.

    Article  CAS  PubMed  Google Scholar 

  87. Raychaudhuri S, Thomson BP, Remmers EF, Eyre S, Hinks A, Guiducci C et al. Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat Genet 2009; 41: 1313–1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 2010; 42: 508–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tobon GJ, Youinou P, Saraux A . The environment, geo-epidemiology, and autoimmune disease: Rheumatoid arthritis. J Autoimmun 2010; 35: 10–14.

    Article  PubMed  Google Scholar 

  90. Maciejewska-Rodrigues H, Karouzakis E, Strietholt S, Hemmatazad H, Neidhart M, Ospelt C et al. Epigenetics and rheumatoid arthritis: the role of SENP1 in the regulation of MMP-1 expression. J Autoimmun 2010; 35: 15–22.

    Article  CAS  PubMed  Google Scholar 

  91. Meinecke I, Rutkauskaite E, Gay S, Pap T . The role of synovial fibroblasts in mediating joint destruction in rheumatoid arthritis. Curr Pharm Des 2005; 11: 563–568.

    Article  CAS  PubMed  Google Scholar 

  92. Karouzakis E, Gay RE, Michel BA, Gay S, Neidhart M . DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 2009; 60: 3613–3622.

    Article  CAS  PubMed  Google Scholar 

  93. Neidhart M, Rethage J, Kuchen S, Kunzler P, Crowl RM, Billingham ME et al. Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic DNA hypomethylation and influence on gene expression. Arthritis Rheum 2000; 43: 2634–2647.

    Article  CAS  PubMed  Google Scholar 

  94. Nile CJ, Read RC, Akil M, Duff GW, Wilson AG . Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum 2008; 58: 2686–2693.

    Article  PubMed  Google Scholar 

  95. Takami N, Osawa K, Miura Y, Komai K, Taniguchi M, Shiraishi M et al. Hypermethylated promoter region of DR3, the death receptor 3 gene, in rheumatoid arthritis synovial cells. Arthritis Rheum 2006; 54: 779–787.

    Article  CAS  PubMed  Google Scholar 

  96. Huber LC, Brock M, Hemmatazad H, Giger OT, Moritz F, Trenkmann M et al. Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum 2007; 56: 1087–1093.

    Article  CAS  PubMed  Google Scholar 

  97. Grabiec AM, Tak PP, Reedquist KA . Targeting histone deacetylase activity in rheumatoid arthritis and asthma as prototypes of inflammatory disease: should we keep our HATs on? Arthritis Res Ther 2008; 10: 226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Nishida K, Komiyama T, Miyazawa S, Shen ZN, Furumatsu T, Doi H et al. Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21(WAF1/Cip1) expression. Arthritis Rheum 2004; 50: 3365–3376.

    Article  CAS  PubMed  Google Scholar 

  99. Manabe H, Nasu Y, Komiyama T, Furumatsu T, Kitamura A, Miyazawa S et al. Inhibition of histone deacetylase down-regulates the expression of hypoxia-induced vascular endothelial growth factor by rheumatoid synovial fibroblasts. Inflamm Res 2008; 57: 4–10.

    Article  CAS  PubMed  Google Scholar 

  100. Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE et al. Altered expression of microRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 2008; 58: 1001–1009.

    Article  PubMed  Google Scholar 

  101. Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum 2008; 58: 1284–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Taganov KD, Boldin MP, Chang KJ, Baltimore D . NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006; 103: 12481–12486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Arora-Singh RK, Assassi S, del Junco DJ, Arnett FC, Perry M, Irfan U et al. Autoimmune diseases and autoantibodies in the first degree relatives of patients with systemic sclerosis. J Autoimmun 2010; 35: 52–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gourh P, Agarwal SK, Martin E, Divecha D, Rueda B, Bunting H et al. Association of the C8orf13-BLK region with systemic sclerosis in North-American and European populations. J Autoimmun 2010; 34: 155–162.

    Article  CAS  PubMed  Google Scholar 

  105. LeRoy EC . Increased collagen synthesis by scleroderma skin fibroblasts in vitro: a possible defect in the regulation or activation of the scleroderma fibroblast. J Clin Invest 1974; 54: 880–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Derk CT, Jimenez SA . Systemic sclerosis: current views of its pathogenesis. Autoimmun Rev 2003; 2: 181–191.

    Article  CAS  PubMed  Google Scholar 

  107. Wang Y, Fan PS, Kahaleh B . Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum 2006; 54: 2271–2279.

    Article  CAS  PubMed  Google Scholar 

  108. Maxwell DB, Grotendorst CA, Grotendorst GR, LeRoy EC . Fibroblast heterogeneity in scleroderma: Clq studies. J Rheumatol 1987; 14: 756–759.

    CAS  PubMed  Google Scholar 

  109. Czuwara-Ladykowska J, Shirasaki F, Jackers P, Watson DK, Trojanowska M . Fli-1 inhibits collagen type I production in dermal fibroblasts via an Sp1-dependent pathway. J Biol Chem 2001; 276: 20839–20848.

    Article  CAS  PubMed  Google Scholar 

  110. Kubo M, Czuwara-Ladykowska J, Moussa O, Markiewicz M, Smith E, Silver RM et al. Persistent down-regulation of Fli1, a suppressor of collagen transcription, in fibrotic scleroderma skin. Am J Pathol 2003; 163: 571–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cross SH, Charlton JA, Nan X, Bird AP . Purification of CpG islands using a methylated DNA binding column. Nat Genet 1994; 6: 236–244.

    Article  CAS  PubMed  Google Scholar 

  112. Chiorini JA, Cihakova D, Ouellette CE, Caturegli P . Sjogren syndrome: advances in the pathogenesis from animal models. J Autoimmun 2009; 33: 190–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Perez P, Anaya JM, Aguilera S, Urzua U, Munroe D, Molina C et al. Gene expression and chromosomal location for susceptibility to Sjogren's syndrome. J Autoimmun 2009; 33: 99–108.

    Article  CAS  PubMed  Google Scholar 

  114. Alevizos I, Illei GG . MicroRNAs in Sjogren's syndrome as a prototypic autoimmune disease. Autoimmun Rev 2010; 9: 618–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bulosan M, Pauley KM, Yo K, Chan EK, Katz J, Peck AB et al. Inflammatory caspases are critical for enhanced cell death in the target tissue of Sjogren's syndrome before disease onset. Immunol Cell Biol 2009; 87: 81–90.

    Article  CAS  PubMed  Google Scholar 

  116. Eizirik DL, Colli ML, Ortis F . The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol 2009; 5: 219–226.

    Article  CAS  PubMed  Google Scholar 

  117. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009; 41: 703–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Knip M, Siljander H . Autoimmune mechanisms in type 1 diabetes. Autoimmun Rev 2008; 7: 550–557.

    Article  CAS  PubMed  Google Scholar 

  119. Patterson CC, Dahlquist GG, Gyurus E, Green A, Soltesz G . Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 2009; 373: 2027–2033.

    Article  PubMed  Google Scholar 

  120. Fourlanos S, Varney MD, Tait BD, Morahan G, Honeyman MC, Colman PG et al. The rising incidence of type 1 diabetes is accounted for by cases with lower-risk human leukocyte antigen genotypes. Diabetes Care 2008; 31: 1546–1549.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Gillespie KM, Bain SC, Barnett AH, Bingley PJ, Christie MR, Gill GV et al. The rising incidence of childhood type 1 diabetes and reduced contribution of high-risk HLA haplotypes. Lancet 2004; 364: 1699–1700.

    Article  PubMed  Google Scholar 

  122. Knip M, Veijola R, Virtanen SM, Hyoty H, Vaarala O, Akerblom HK . Environmental triggers and determinants of type 1 diabetes. Diabetes 2005; 54 Suppl 2, S125–136.

    Article  CAS  PubMed  Google Scholar 

  123. Lefebvre DE, Powell KL, Strom A, Scott FW . Dietary proteins as environmental modifiers of type 1 diabetes mellitus. Annu Rev Nutr 2006; 26: 175–202.

    Article  CAS  PubMed  Google Scholar 

  124. Kauri LM, Wang GS, Patrick C, Bareggi M, Hill DJ, Scott FW et al. Increased islet neogenesis without increased islet mass precedes autoimmune attack in diabetes-prone rats. Lab Invest 2007; 87: 1240–1251.

    Article  CAS  PubMed  Google Scholar 

  125. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 2008; 40: 897–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pfleger C, Meierhoff G, Kolb H, Schloot NC . Association of T-cell reactivity with beta-cell function in recent onset type 1 diabetes patients. J Autoimmun 2010; 34: 127–135.

    Article  CAS  PubMed  Google Scholar 

  127. Wilson CB, Rowell E, Sekimata M . Epigenetic control of T-helper-cell differentiation. Nat Rev Immunol 2009; 9: 91–105.

    Article  CAS  PubMed  Google Scholar 

  128. Sawalha AH . Epigenetics and T-cell immunity. Autoimmunity 2008; 41: 245–252.

    Article  CAS  PubMed  Google Scholar 

  129. Aune TM, Collins PL, Chang S . Epigenetics and T helper 1 differentiation. Immunology 2009; 126: 299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fox JT, Stover PJ . Folate-mediated one-carbon metabolism. Vitam Horm 2008; 79: 1–44.

    Article  CAS  PubMed  Google Scholar 

  131. Waterland RA, Jirtle RL . Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 2003; 23: 5293–5300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lempainen J, Vaarala O, Makela M, Veijola R, Simell O, Knip M et al. Interplay between PTPN22 C1858T polymorphism and cow's milk formula exposure in type 1 diabetes. J Autoimmun 2009; 33: 155–164.

    Article  CAS  PubMed  Google Scholar 

  133. Chamson-Reig A, Arany EJ, Summers K, Hill DJ . A low protein diet in early life delays the onset of diabetes in the non-obese diabetic mouse. J Endocrinol 2009; 201: 231–239.

    Article  CAS  PubMed  Google Scholar 

  134. Boujendar S, Arany E, Hill D, Remacle C, Reusens B . Taurine supplementation of a low protein diet fed to rat dams normalizes the vascularization of the fetal endocrine pancreas. J Nutr 2003; 133: 2820–2825.

    Article  CAS  PubMed  Google Scholar 

  135. Arany E, Strutt B, Romanus P, Remacle C, Reusens B, Hill DJ . Taurine supplement in early life altered islet morphology, decreased insulitis and delayed the onset of diabetes in non-obese diabetic mice. Diabetologia 2004; 47: 1831–1837.

    Article  CAS  PubMed  Google Scholar 

  136. Sospedra M, Martin R . Immunology of multiple sclerosis. Annu Rev Immunol 2005; 23: 683–747.

    Article  CAS  PubMed  Google Scholar 

  137. Akkad DA, Hoffjan S, Petrasch-Parwez E, Beygo J, Gold R, Epplen JT . Variation in the IL7RA and IL2RA genes in German multiple sclerosis patients. J Autoimmun 2009; 32: 110–115.

    Article  CAS  PubMed  Google Scholar 

  138. Oksenberg JR, Baranzini SE, Sawcer S, Hauser SL . The genetics of multiple sclerosis: SNPs to pathways to pathogenesis. Nat Rev Genet 2008; 9: 516–526.

    Article  CAS  PubMed  Google Scholar 

  139. Brynedal B, Duvefelt K, Jonasdottir G, Roos IM, Akesson E, Palmgren J et al. HLA-A confers an HLA-DRB1 independent influence on the risk of multiple sclerosis. PLoS One 2007; 2: e664.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Lundmark F, Duvefelt K, Iacobaeus E, Kockum I, Wallstrom E, Khademi M et al. Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nat Genet 2007; 39: 1108–1113.

    Article  CAS  PubMed  Google Scholar 

  141. Zivadinov R, Uxa L, Bratina A, Bosco A, Srinivasaraghavan B, Minagar A et al. HLA-DRB1*1501, -DQB1*0301, -DQB1*0302, -DQB1*0602, and -DQB1*0603 alleles are associated with more severe disease outcome on MRI in patients with multiple sclerosis. Int Rev Neurobiol 2007; 79: 521–535.

    Article  CAS  PubMed  Google Scholar 

  142. Chao MJ, Ramagopalan SV, Herrera BM, Lincoln MR, Dyment DA, Sadovnick AD et al. Epigenetics in multiple sclerosis susceptibility: difference in transgenerational risk localizes to the major histocompatibility complex. Hum Mol Genet 2009; 18: 261–266.

    Article  CAS  PubMed  Google Scholar 

  143. Hansen T, Skytthe A, Stenager E, Petersen HC, Bronnum-Hansen H, Kyvik KO . Concordance for multiple sclerosis in Danish twins: an update of a nationwide study. Mult Scler 2005; 11: 504–510.

    Article  CAS  PubMed  Google Scholar 

  144. Willer CJ, Dyment DA, Risch NJ, Sadovnick AD, Ebers GC . Twin concordance and sibling recurrence rates in multiple sclerosis. Proc Natl Acad Sci USA 2003; 100: 12877–12882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Herrero-Herranz E, Pardo LA, Bunt G, Gold R, Stuhmer W, Linker RA . Re-expression of a developmentally restricted potassium channel in autoimmune demyelination: Kv1.4 is implicated in oligodendroglial proliferation. Am J Pathol 2007; 171: 589–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. John GR, Shankar SL, Shafit-Zagardo B, Massimi A, Lee SC, Raine CS et al. Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med 2002; 8: 1115–1121.

    Article  CAS  PubMed  Google Scholar 

  147. Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD . NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci 2000; 20: 6404–6412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Compston A . Limiting and repairing the damage in multiple sclerosis. Schweiz Med Wochenschr 1993; 123: 1145–1152.

    CAS  PubMed  Google Scholar 

  149. Mastronardi FG, Noor A, Wood DD, Paton T, Moscarello MA . Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated. J Neurosci Res 2007; 85: 2006–2016.

    Article  CAS  PubMed  Google Scholar 

  150. Moscarello MA, Brady GW, Fein DB, Wood DD, Cruz TF . The role of charge microheterogeneity of basic protein in the formation and maintenance of the multilayered structure of myelin: a possible role in multiple sclerosis. J Neurosci Res 1986; 15: 87–99.

    Article  CAS  PubMed  Google Scholar 

  151. Moscarello MA, Wood DD, Ackerley C, Boulias C . Myelin in multiple sclerosis is developmentally immature. J Clin Invest 1994; 94: 146–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mastronardi FG, Tsui H, Winer S, Wood DD, Selvanantham T, Galligan C et al. Synergy between paclitaxel plus an exogenous methyl donor in the suppression of murine demyelinating diseases. Mult Scler 2007; 13: 596–609.

    Article  CAS  PubMed  Google Scholar 

  153. D'Souza CA, Wood DD, She YM, Moscarello MA . Autocatalytic cleavage of myelin basic protein: an alternative to molecular mimicry. Biochemistry 2005; 44: 12905–12913.

    Article  CAS  PubMed  Google Scholar 

  154. Musse AA, Boggs JM, Harauz G . Deimination of membrane-bound myelin basic protein in multiple sclerosis exposes an immunodominant epitope. Proc Natl Acad Sci USA 2006; 103: 4422–4427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tranquill LR, Cao L, Ling NC, Kalbacher H, Martin RM, Whitaker JN . Enhanced T cell responsiveness to citrulline-containing myelin basic protein in multiple sclerosis patients. Mult Scler 2000; 6: 220–225.

    Article  CAS  PubMed  Google Scholar 

  156. Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian P, Khrebtukova I, Miller NA et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 2010; 464: 1351–1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Camelo S, Iglesias AH, Hwang D, Due B, Ryu H, Smith K et al. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol 2005; 164: 10–21.

    Article  CAS  PubMed  Google Scholar 

  158. Hohenester S, Oude-Elferink RP, Beuers U . Primary biliary cirrhosis. Semin Immunopathol 2009; 31: 283–307.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Gershwin ME, Mackay IR, Sturgess A, Coppel RL . Identification and specificity of a cDNA encoding the 70 kD mitochondrial antigen recognized in primary biliary cirrhosis. J Immunol 1987; 138: 3525–3531.

    CAS  PubMed  Google Scholar 

  160. Bruggraber SF, Leung PS, Amano K, Quan C, Kurth MJ, Nantz MH et al. Autoreactivity to lipoate and a conjugated form of lipoate in primary biliary cirrhosis. Gastroenterology 2003; 125: 1705–1713.

    Article  CAS  PubMed  Google Scholar 

  161. Nakano T, Inoue K, Hirohara J, Arita S, Higuchi K, Omata M et al. Long-term prognosis of primary biliary cirrhosis (PBC) in Japan and analysis of the factors of stage progression in asymptomatic PBC (a-PBC). Hepatol Res 2002; 22: 250–260.

    Article  PubMed  Google Scholar 

  162. Liu X, Invernizzi P, Lu Y, Kosoy R, Lu Y, Bianchi I et al. Genome-wide meta-analyses identifies three loci associated with primary biliary cirrhosis. Nat Genet 2010; in press.

  163. Invernizzi P, Selmi C, Mackay IR, Podda M, Gershwin ME . From bases to basis: linking genetics to causation in primary biliary cirrhosis. Clin Gastroenterol Hepatol 2005; 3: 401–410.

    Article  CAS  PubMed  Google Scholar 

  164. Selmi C, Invernizzi P, Miozzo M, Podda M, Gershwin ME . Primary biliary cirrhosis: does X mark the spot? Autoimmun Rev 2004; 3: 493–499.

    Article  CAS  PubMed  Google Scholar 

  165. Mitchell MM, Lleo A, Zammataro L, Mayo MJ, Invernizzi P, Bach N et al. Epigenetic investigation of variably X chromosome inactivated genes in monozygotic female twins discordant for primary biliary cirrhosis. Epigenetics 2011; 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Invernizzi P, Miozzo M, Battezzati PM, Bianchi I, Grati FR, Simoni G et al. Frequency of monosomy X in women with primary biliary cirrhosis. Lancet 2004; 363: 533–535.

    Article  PubMed  Google Scholar 

  167. Matthias T, Shoenfeld Y . Challenges for the autoimmunologist. Clin Rev Allergy Immunol 2010; 38: 75–76.

    Article  PubMed  Google Scholar 

  168. Invernizzi P . Geoepidemiology of autoimmune liver diseases. J Autoimmun 2010; 34: J300–J306.

    Article  CAS  PubMed  Google Scholar 

  169. Shapira Y, Agmon-Levin N, Shoenfeld Y . Defining and analyzing geoepidemiology and human autoimmunity. J Autoimmun 2010; 34: J168–J177.

    Article  CAS  PubMed  Google Scholar 

  170. Youinou P, Pers JO, Gershwin ME, Shoenfeld Y . Geo-epidemiology and autoimmunity. J Autoimmun 2010; 34: J163–J167.

    Article  CAS  PubMed  Google Scholar 

  171. van Steensel B . Mapping of genetic and epigenetic regulatory networks using microarrays. Nat Genet 2005; 37 Suppl: S18–S24.

    Article  PubMed  CAS  Google Scholar 

  172. Cedar H, Bergman Y . Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009; 10: 295–304.

    Article  CAS  PubMed  Google Scholar 

  173. Laird PW . Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 2010; 11: 191–203.

    Article  CAS  PubMed  Google Scholar 

  174. Jirtle RL, Skinner MK . Environmental epigenomics and disease susceptibility. Nat Rev Genet 2007; 8: 253–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Esteller M . Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 2007; 8: 286–298.

    Article  CAS  PubMed  Google Scholar 

  176. Brooks WH, Le Dantec C, Pers JO, Youinou P, Renaudineau Y . Epigenetics and autoimmunity. J Autoimmun 2010; 34: J207–219.

    Article  CAS  PubMed  Google Scholar 

  177. Cang S, Lu Q, Ma Y, Liu D . Clinical advances in hypomethylating agents targeting epigenetic pathways. Curr Cancer Drug Targets 2010; 10: 539–545.

    Article  CAS  PubMed  Google Scholar 

  178. Tan J, Cang S, Ma Y, Petrillo RL, Liu D . Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J Hematol Oncol 2010; 3: 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Abu-Lebdeh HS, Barazzoni R, Meek SE, Bigelow ML, Persson XM, Nair KS . Effects of insulin deprivation and treatment on homocysteine metabolism in people with type 1 diabetes. J Clin Endocrinol Metab 2006; 91: 3344–3348.

    Article  CAS  PubMed  Google Scholar 

  180. Chiang EP, Wang YC, Chen WW, Tang FY . Effects of insulin and glucose on cellular metabolic fluxes in homocysteine transsulfuration, remethylation, S-adenosylmethionine synthesis, and global deoxyribonucleic acid methylation. J Clin Endocrinol Metab 2009; 94: 1017–1025.

    Article  CAS  PubMed  Google Scholar 

  181. Fonseca V, Dicker-Brown A, Ranganathan S, Song W, Barnard RJ, Fink L et al. Effects of a high-fat-sucrose diet on enzymes in homocysteine metabolism in the rat. Metabolism 2000; 49: 736–741.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the American Liver Foundation (CS) and NIH R21DK075400 (CS). AB receives salary support from New Investigator funding from the HSPH-NIEHS Center for Environmental Health (ES000002). The authors are grateful to Dr. Esteban Ballestar for the valuable discussion and contribution to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Selmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meda, F., Folci, M., Baccarelli, A. et al. The epigenetics of autoimmunity. Cell Mol Immunol 8, 226–236 (2011). https://doi.org/10.1038/cmi.2010.78

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.78

Keywords

This article is cited by

Search

Quick links