Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Bioelectrical impedance analysis to estimate body composition in surgical and oncological patients: a systematic review

Abstract

Objective:

Bioelectrical impedance analysis (BIA) is a commonly used method for the evaluation of body composition. However, BIA estimations are subject to uncertainties.

The aim of this systematic review was to explore the variability of empirical prediction equations used in BIA estimations and to evaluate the validity of BIA estimations in adult surgical and oncological patients.

Subjects:

Studies developing new empirical prediction equations and studies evaluating the validity of BIA estimations compared with a reference method were included. Only studies using BIA devices measuring the entire body were included. Studies that included patients with altered body composition or a disturbed fluid balance and studies written in languages other than English were excluded.

To illustrate variability between equations, fixed normal reference values of resistance values were entered into the existing empirical prediction equations of the included studies and the results were plotted in figures. The validity was expressed by the difference in means between BIA estimates and the reference method, and relative difference in %.

Results:

Substantial variability between equations for groups (including men and women) was found for total body water (TBW) and fat free mass (FFM). The gender-specific existing general equations assume less variability for TBW and FFM. BIA mainly underestimated TBW (range relative difference −18.8% to +7.2%) and FFM (range relative differences −15.2% to +3.8%). Estimates of the fat mass (FM) demonstrated large variability (range relative difference −15.7 to +43.1%).

Conclusions:

Application of equations validated in healthy subjects to predict body composition performs less well in oncologic and surgical patients. We suggest that BIA estimations, irrespective of the device, can only be useful when performed longitudinally and under the same standard conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Heitmann BL et al. Bioelectrical impedance analysis-part I: review of principles and methods. Clin Nutr 2004; 23: 1226–1243.

    Article  PubMed  Google Scholar 

  2. De Lorenzo A, Andreoli A, Matthie J, Withers P . Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J Appl Physiol 1997; 82: 1542–1558.

    Article  CAS  PubMed  Google Scholar 

  3. Ellis KJ . Human body composition: in vivo methods. Physiol Rev 2000; 80: 649–680.

    Article  CAS  PubMed  Google Scholar 

  4. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE . A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab 2008; 33: 997–1006.

    Article  PubMed  Google Scholar 

  5. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gómez J et al. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr 2004; 23: 1430–1453.

    Article  PubMed  Google Scholar 

  6. Lukaski HC . Requirements for clinical use of bioelectrical impedance analysis (BIA). Ann N Y Acad Sci 1999; 873: 72–76.

    Article  CAS  PubMed  Google Scholar 

  7. Lukaski HC . Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr 1987; 46: 537–556.

    Article  CAS  PubMed  Google Scholar 

  8. Cox-Reijven PLM . The validation of bio-electrical impedance spectroscopy (BIS) for measuring body composition in patients. Thesis. Maastricht: ISBN 90-5681-17-9, 2002.

  9. Dittmar M . Reliability and variability of bioimpedance measures in normal adults: effects of age, gender, and body mass. Am J Phys Anthropol 2003; 122: 361–370.

    Article  PubMed  Google Scholar 

  10. Selberg O, Selberg D . Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. Eur J Appl Physiol 2002; 86: 509–516.

    Article  CAS  PubMed  Google Scholar 

  11. van Marken Lichtenbelt WD, Westerterp KR, Wouters L, Luijendijk SC . Validation of bioelectrical-impedance measurements as a method to estimate body-water compartments. Am J Clin Nutr 1994; 60: 159–166.

    Article  CAS  PubMed  Google Scholar 

  12. Jaffrin MY, Morel H . Body fluid volumes measurements by impedance: a review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med Eng Phys 2008; 30: 1257–1269.

    Article  PubMed  Google Scholar 

  13. Earthman C, Traughber D, Dobratz J, Howell W . Bioimpedance spectroscopy for clinical assessment of fluid distribution and body cell mass. Nutr Clin Pract 2007; 22: 389–405.

    Article  PubMed  Google Scholar 

  14. Buchholz AC, Bartok C, Schoeller DA . The validity of bioelectrical impedance models in clinical populations. Nutr Clin Pract 2004; 19: 433–446.

    Article  PubMed  Google Scholar 

  15. Gupta D, Lis CG, Dahlk SL, Vashi PG, Grutsch JF, Lammersfeld CA . Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer. Br J Nutr 2004; 92: 957–962.

    Article  CAS  PubMed  Google Scholar 

  16. Barbosa-Silva MC, Barros A J, Wang J, Heymsfield SB, Pierson RN . Bioelectrical impedance analysis: population reference values for phase angle by age and sex. Am J Clin Nutr 2005; 82: 49–52.

    Article  CAS  PubMed  Google Scholar 

  17. Mattsson S, Thomas BJ . Development of methods for body composition studies. Phys Med Biol 2006; 7 51: R203–R228.

    Article  Google Scholar 

  18. Brodie D, Moscrip V, Hutcheon R . Body composition measurement: a review of hydrodensitometry, anthropometry, and impedance methods. Nutrition 1998; 14: 296–310.

    Article  CAS  PubMed  Google Scholar 

  19. Dutch Malnutrition Steering Group, Amsterdam, The Netherlands. http://www.stuurgroepondervoeding.nl Accessed July 1st 2008.

  20. Moher D, Liberati A, Tetzlaff J, Altman D G PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009; 151: 264–269.

    Article  PubMed  Google Scholar 

  21. Heymsfield SB, Wang Z, Visser M, Gallagher D, Pierson RN . Techniques used in the measurement of body composition: an overview with emphasis on bioelectrical impedance analysis. Am J Clin Nutr 1996; 64: 478S–484S.

    Article  CAS  PubMed  Google Scholar 

  22. Ellis KJ, Shypailo RJ, Pratt JA, Pond WG . Accuracy of dual-energy x-ray absorptiometry for body-composition measurements in children. Am J Clin Nutr 1994; 60: 660–665.

    Article  CAS  PubMed  Google Scholar 

  23. Kyle UG, Genton L, Slosman DO, Pichard C . Fat-free and fat mass percentiles in 5225 healthy subjects aged 15 to 98 years. Nutrition 2001; 17: 534–541.

    Article  CAS  PubMed  Google Scholar 

  24. Schroeder D, Christie PM, Hill GL . Bioelectrical impedance analysis for body composition: clinical evaluation in general surgical patients. JPEN J Parenter Enteral Nutr 1990; 14: 129–133.

    Article  CAS  PubMed  Google Scholar 

  25. Fredrix EW, Saris WH, Soeters PB, Wouters EF, Kester AD, von Meyenfeldt MF, Westerterp KR . Estimation of body composition by bioelectrical impedance in cancer patients. Eur J Clin Nutr 1990; 44: 749–752.

    CAS  PubMed  Google Scholar 

  26. Fearon KC, Richardson RA, Hannan J, Cowan S, Watson W, Shenkin A, Garden OJ . Bioelectrical impedance analysis in the measurement of the body composition of surgical patients. Br J Surg 1992; 79: 421–423.

    Article  CAS  PubMed  Google Scholar 

  27. Miholic J, Reilmann L, Meyer HJ, Körber H, Dieckelmann A, Pichlmayr R . Estimation of extracellular space and blood volume using bioelectrical impedance measurements. Clin Investig 1992; 70: 600–605.

    Article  CAS  PubMed  Google Scholar 

  28. Hannan WJ, Cowen SJ, Fearon KC, Plester CE, Falconer JS, Richardson RA . Evaluation of multi-frequency bio-impedance analysis for the assessment of extracellular and total body water in surgical patients. Clin Sci (Lond) 1994; 86: 479–485.

    Article  CAS  Google Scholar 

  29. Simons JP, Schols AM, Westerterp KR, ten Velde GP, Wouters EF . The use of bioelectrical impedance analysis to predict total body water in patients with cancer cachexia. Am J Clin Nutr 1995; 61: 741–745.

    Article  CAS  PubMed  Google Scholar 

  30. Jensen MB, Hermann AP, Hessov I, Mosekilde L . Components of variance when assessing the reproducibility of body composition measurements using bio-impedance and the Hologic QDR-2000 DXA scanner. Clin Nutr 1997; 16: 61–65.

    Article  CAS  PubMed  Google Scholar 

  31. Hannan WJ, Cowen SJ, Plester C, Fearon KC . Proximal and distal measurements of extracellular and total body water by multi-frequency bio-impedance analysis in surgical patients. Appl Radiat Isot 1998; 49: 621–622.

    Article  CAS  PubMed  Google Scholar 

  32. Smith MR, Fuchs V, Anderson EJ, Fallon MA, Manola J . Measurement of body fat by dual-energy X-ray absorptiometry and bioimpedance analysis in men with prostate cancer. Nutrition 2002; 18: 574–577.

    Article  PubMed  Google Scholar 

  33. Ellegård LH, Ahlén M, Körner U, Lundholm KG, Plank LD, Bosaeus IG . Bioelectric impedance spectroscopy underestimates fat-free mass compared to dual energy X-ray absorptiometry in incurable cancer patients. Eur J Clin Nutr 2009; 63: 794–801.

    Article  PubMed  Google Scholar 

  34. van Venrooij LM, Verberne HJ, de Vos R, Borgmeijer-Hoelen MM, van Leeuwen PA, de Mol BA . Preoperative and postoperative agreement in fat free mass (FFM) between bioelectrical impedance spectroscopy (BIS) and dual-energy X-ray absorptiometry (DXA) in patients undergoing cardiac surgery. Clin Nutr 2010; 29: 789–794.

    Article  PubMed  Google Scholar 

  35. Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI . Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 1985; 41: 810–817.

    Article  CAS  PubMed  Google Scholar 

  36. Kushner RF, Schoeller DA . Estimation of total body water by bioelectrical impedance analysis. Am J Clin Nutr 1986; 44: 417–424.

    Article  CAS  PubMed  Google Scholar 

  37. Van Loan M, Mayclin P . Bioelectrical impedance analysis: is it a reliable estimator of lean body mass and total body water? Hum Biol 1987; 59: 299–309.

    CAS  PubMed  Google Scholar 

  38. Lukaski HC, Bolonchuk WW . Estimation of body fluid volumes using tetrapolar bioelectrical impedance measurements. Aviat Space Environ Med 1988; 59: 1163–1169.

    CAS  PubMed  Google Scholar 

  39. Heitmann BL . Prediction of body water and fat in adult Danes from measurement of electrical impedance. A validation study. Int J Obes 1990; 14: 789–802.

    CAS  PubMed  Google Scholar 

  40. Kushner RF, Schoeller DA, Fjeld CR, Danford L . Is the impedance index (ht2/R) significant in predicting total body water? Am J Clin Nutr 1992; 56: 835–839.

    Article  CAS  PubMed  Google Scholar 

  41. Lukaski HC, Bolonchuk WW, Hall CB, Siders WA . Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol 1986; 60: 1327–1332.

    Article  CAS  PubMed  Google Scholar 

  42. Segal KR, Van Loan M, Fitzgerald PI, Hodgdon JA, Van Itallie TB . Lean body mass estimation by bioelectrical impedance analysis: a four-site cross-validation study. Am J Clin Nutr 1988; 47: 7–14.

    Article  CAS  PubMed  Google Scholar 

  43. Graves JE, Pollock ML, Colvin AB, Van Loan M, Lohman TG . Comparison of different bioelectrical impedance analyzers in the prediction of body composition. Am J Hum Biol 1989; 1: 603–611.

    Article  PubMed  Google Scholar 

  44. Deurenberg P, van der Kooij K, Evers P, Hulshof T . Assessment of body composition by bioelectrical impedance in a population aged greater than 60 y. Am J Clin Nutr 1990; 51: 3–6.

    Article  CAS  PubMed  Google Scholar 

  45. Deurenberg P, van der Kooy K, Leenen R, Weststrate JA, Seidell JC . Sex and age specific prediction formulas for estimating body composition from bioelectrical impedance: a cross-validation study. Int J Obes 1991; 15: 17–25.

    CAS  PubMed  Google Scholar 

  46. Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, Bosy-Westphal A et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas 2006; 27: 921–933.

    Article  PubMed  Google Scholar 

  47. Kyle UG, Genton L, Karsegard L, Slosman DO, Pichard C . Single prediction equation for bioelectrical impedance analysis in adults aged 20-94 years. Nutrition 2001; 17: 248–253.

    Article  CAS  PubMed  Google Scholar 

  48. Hassen TA, Pearson S, Cowled PA, Fitridge RA . Preoperative nutritional status predicts the severity of the systemic inflammatory response syndrome (SIRS) following major vascular surgery. Eur J Vasc Endovasc Surg 2007; 33: 696–702.

    Article  CAS  PubMed  Google Scholar 

  49. CBO Guideline Perioperative Nutrition Dutch Institute for Healthcare Improvement. Utrecht, The Netherlands. http://www.cbo.nl/Downloads/114/rl_periovoed_07.pdf. (accessed 2007).

  50. Wolfe RR . Is the double-blind randomized trial the most valid experimental approach to evaluating treatment modalities in critical ill patiënts? Curr Opin Clin Nutr Metab Care 1998; 1: 185–187.

    Article  Google Scholar 

  51. Windsor JA, Hill GL . Weight loss with physiologic impairment. A basic indicator of surgical risk. Ann Surg 1988; 207: 290–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Awad S, Lobo DN . What’s new in perioperative nutritional support? Curr Opin Anaesthesiol 2011; 24: 339–348.

    Article  PubMed  Google Scholar 

  53. Bower MR, Martin RC . Nutritional management during neoadjuvant therapy for esophageal cancer. J Surg Oncol 2009; 100: 82–87.

    Article  PubMed  Google Scholar 

  54. Prado CM, Baracos VE, McCargar LJ, Reiman T, Mourtzakis M, Tonkin K, Mackey JR, Koski S, Pituskin E, Sawyer MB . Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin Cancer Res 2009; 15: 2920–2926.

    Article  CAS  PubMed  Google Scholar 

  55. Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, Baracos VE . Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol 2008; 9: 629–635.

    Article  PubMed  Google Scholar 

  56. Piccoli A, Pillon L, Dumler F . Impedance vector distribution by sex, race, body mass index, and age in the United States: standard reference intervals as bivariate Z scores. Nutrition 2002; 18: 153–167.

    Article  PubMed  Google Scholar 

  57. Barbosa-Silva MC, Barros AJ, Post CL, Waitzberg DL, Heymsfield SB . Can bioelectrical impedance analysis identify malnutrition in preoperative nutrition assessment? Nutrition 2003; 19: 422–426.

    Article  PubMed  Google Scholar 

  58. Barbosa-Silva MC, Barros AJ . Bioelectric impedance and individual characteristics as prognostic factors for post-operative complications. Clin Nutr 2005; 24: 830–838.

    Article  PubMed  Google Scholar 

  59. Barbosa-Silva MC, Barros AJ . Bioelectrical impedance analysis in clinical practice: a new perspective on its use beyond body composition equations. Curr Opin Clin Nutr Metab Care 2005; 8: 311–317.

    Article  PubMed  Google Scholar 

  60. Cardinal TR, Wazlawik E, Bastos JL, Nakazora LM, Scheunemann L . Standardized phase angle indicates nutritional status in hospitalized preoperative patients. Nutr Res 2010; 30: 594–600.

    Article  CAS  PubMed  Google Scholar 

  61. Gupta D, Lis CG, Dahlk SL, King J, Vashi PG, Grutsch JF et al. The relationship between bioelectrical impedance phase angle and subjective global assessment in advanced colorectal cancer. Nutr J 2008; 30: 19.

    Article  Google Scholar 

  62. Itobi E, Stroud M, Elia M . Impact of oedema on recovery after major abdominal surgery and potential value of multifrequency bioimpedance measurements. Br J Surg 2006; 93: 354–361.

    Article  CAS  PubMed  Google Scholar 

  63. Castillo Martínez L, Colín Ramírez E, Orea Tejeda A, Asensio Lafuente E, Bernal Rosales LP, Rebollar González V et al. Bioelectrical impedance and strength measurements in patients with heart failure: comparison with functional class. Nutrition 2007; 23: 412–418.

    Article  PubMed  Google Scholar 

  64. Kyle U G, Genton L, Hans D, Pichard C . Validation of a bioelectrical impedance analysis equation to predict appendicular skeletal muscle mass (ASMM). Clin Nutr 2003; 22: 537–543.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E B Haverkort.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author Contributors

Study conception and design: EBH, MAEdvdS and CPE. Collection of data: EH. Analysis and interpretation of data: EBH, PLMV, JMB, MAEdvdS, CPE, RJdH and DJG. All authors have actively contributed, read and approved the final manuscript.

Supplementary Information accompanies this paper on European Journal of Clinical Nutrition website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haverkort, E., Reijven, P., Binnekade, J. et al. Bioelectrical impedance analysis to estimate body composition in surgical and oncological patients: a systematic review. Eur J Clin Nutr 69, 3–13 (2015). https://doi.org/10.1038/ejcn.2014.203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2014.203

This article is cited by

Search

Quick links