Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Body Composition Highlights Review

Body composition during fetal development and infancy through the age of 5 years

Abstract

Fetal body composition is an important determinant of body composition at birth, and it is likely to be an important determinant at later stages in life. The purpose of this work is to provide a comprehensive overview by presenting data from previously published studies that report on body composition during fetal development in newborns and the infant/child through 5 years of age. Understanding the changes in body composition that occur both in utero and during infancy and childhood, and how they may be related, may help inform evidence-based practice during pregnancy and childhood. We describe body composition measurement techniques from the in utero period to 5 years of age, and identify gaps in knowledge to direct future research efforts. Available literature on chemical and cadaver analyses of fetal studies during gestation is presented to show the timing and accretion rates of adipose and lean tissues. Quantitative and qualitative aspects of fetal lean and fat mass accretion could be especially useful in the clinical setting for diagnostic purposes. The practicality of different pediatric body composition measurement methods in the clinical setting is discussed by presenting the assumptions and limitations associated with each method that may assist the clinician in characterizing the health and nutritional status of the fetus, infant and child. It is our hope that this review will help guide future research efforts directed at increasing the understanding of how body composition in early development may be associated with chronic diseases in later life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Wells JC, Fewtrell MS . Is body composition important for paediatricians? Arch Dis Child 2008; 93: 168–172.

    Article  PubMed  Google Scholar 

  2. Gardeil F, Greene R, Stuart B, Turner MJ . Subcutaneous fat in the fetal abdomen as a predictor of growth restriction. Obstet Gynecol 1999; 94: 209–212.

    CAS  PubMed  Google Scholar 

  3. Skinner J, O'Donoghue K, Gardeil F, Greene R, Turner MJ . Is fetal abdominal subcutaneous fat comparable with established indices of growth restriction? J Obst Gynaecol 2001; 21: 439–442.

    Article  CAS  Google Scholar 

  4. Berger-Kulemann V, Brugger PC, Reisegger M, Klein K, Hachemian N, Koelblinger C et al. Quantification of the subcutaneous fat layer with MRI in fetuses of healthy mothers with no underlying metabolic disease vs. fetuses of diabetic and obese mothers. J Perinat Med 2012; 40: 179–184.

    Article  Google Scholar 

  5. Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD et al. Skinfold equations for estimation of body fatness in children and youth. Human Biol 1988; 60: 709–723.

    CAS  PubMed  Google Scholar 

  6. Janz KF, Nielsen DH, Cassady SL, Cook JS, Wu YT, Hansen JR . Cross-validation of the Slaughter skinfold equations for children and adolescents. Med Sci Sports Exerc 1993; 25: 1070–1076.

    Article  CAS  PubMed  Google Scholar 

  7. Sen B, Bose K, Shaikh S, Mahalanabis D . Prediction equations for body-fat percentage in Indian infants and young children using skinfold thickness and mid-arm circumference. J Health Popul Nutr 2010; 28: 221–229.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hoffman DJ, Toro-Ramos T, Sawaya AL, Roberts SB, Rondo P . Estimating total body fat using a skinfold prediction equation in Brazilian children. Ann Human Biol 2012; 39: 156–160.

    Article  Google Scholar 

  9. Urlando A, Dempster P, Aitkens S . A new air displacement plethysmograph for the measurement of body composition in infants. Pediatr Res 2003; 53: 486–492.

    Article  PubMed  Google Scholar 

  10. Dempster P, Aitkens S . A new air displacement method for the determination of human body composition. Med Sci Sports Exerc 1995; 27: 1692–1697.

    Article  CAS  PubMed  Google Scholar 

  11. Cardozo RH, Edelman IS . The volume of distribution of sodium thiosulfate as a measure of the extracellular fluid space. J Clin Invest 1952; 31: 280–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Widdowson EM, Spray CM . Chemical development in utero. Arch Dis Child 1951; 26: 205–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deans HE, Smith FW, Lloyd DJ, Law AN, Sutherland HW . Fetal fat measurement by magnetic resonance imaging. Br J Radiol 1989; 62: 603–607.

    Article  CAS  PubMed  Google Scholar 

  14. Fomon SJ, Haschke F, Ziegler EE, Nelson SE . Body composition of reference children from birth to age 10 years. Am J Clin Nutr 1982; 35: 1169–1175.

    Article  CAS  PubMed  Google Scholar 

  15. Ellis KJ . Human body composition: in vivo methods. Physiol Rev 2000; 80: 649–680.

    Article  CAS  PubMed  Google Scholar 

  16. Barbosa Baker Meio MD, Lopes Moreira ME . Total body water in newborns. In: Preedy VR (ed.). Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease 2. Springer Science+Business Media LLC: New York, 2012, p. 1121.

    Chapter  Google Scholar 

  17. Heymsfield S, Lohman T, Wang Z-M, Going S . In: Going SB (ed.). Human Body Composition, 2nd ed. Human Kinetics Publishers: Champaign, IL, USA, 2005.

    Google Scholar 

  18. Institute of Medicine (IOM) Weight Gain During Pregnancy: Reexamining the Guidelines. National Academic Press: Washington, DC, 2009.

  19. Sridhar S, Baumgart S . Water and electrolyte balance in newborn infants. In Thrureen PJ, Hay WW (eds). Neonatal Nutrition and Metabolism. Cambridge University Press: Cambridge, 2006, pp 104–114.

    Chapter  Google Scholar 

  20. Widdowson EM, Dickerson JWT Chemical composition of the body. In: Comar CL, Bronner F (eds). Mineral Metabolism, An Advanced Treatise II, Part A. Academic: New York, 1964, pp 1–247.

    Google Scholar 

  21. Moulton CR . Age and chemical development in mammals. J Biol Chem 1923; 57: 79–97.

    CAS  Google Scholar 

  22. Friis-Hansen B . Water distribution in the foetus and newborn infant. Acta Paediatr Scand Suppl 1983; 305: 7–11.

    Article  CAS  PubMed  Google Scholar 

  23. Ziegler EE . Body composition of the reference fetus. Growth 1976; 40: 329–341.

    CAS  PubMed  Google Scholar 

  24. Votino C, Verhoye M, Segers V, Cannie M, Bessieres B, Cos T et al. Fetal organ weight estimation by postmortem high-field magnetic resonance imaging before 20 weeks' gestation. Ultrasound Obstet Gynecol 2012; 39: 673–678.

    Article  CAS  PubMed  Google Scholar 

  25. Thayyil S, Schievano S, Robertson NJ, Jones R, Chitty LS, Sebire NJ et al. A semi-automated method for non-invasive internal organ weight estimation by post-mortem magnetic resonance imaging in fetuses, newborns and children. Eur J Radiol 2009; 72: 321–326.

    Article  PubMed  Google Scholar 

  26. Thayyil S, Cleary JO, Sebire NJ, Scott RJ, Chong K, Gunny R et al. Post-mortem examination of human fetuses: a comparison of whole-body high-field MRI at 9.4 T with conventional MRI and invasive autopsy. Lancet 2009; 374: 467–475.

    Article  PubMed  Google Scholar 

  27. Larciprete G, Valensise H, Vasapollo B, Novelli GP, Parretti E, Altomare F et al. Fetal subcutaneous tissue thickness (SCTT) in healthy and gestational diabetic pregnancies. Ultrasound Obstet Gynecol 2003; 22: 591–597.

    Article  CAS  PubMed  Google Scholar 

  28. Ziegler EE, O'Donnell AM, Nelson SE, Fomon SJ . Body composition of the reference fetus. Growth 1976; 40: 329–341.

    CAS  PubMed  Google Scholar 

  29. Demerath EW, Fields DA . Body composition assessment in the infant. Am J Hum Biol 2014; 26: 291–304.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hull HR, Thornton JC, Ji Y, Paley C, Rosenn B, Mathews P et al. Higher infant body fat with excessive gestational weight gain in overweight women. Am J Obstet Gynecol 2011; 205: e1–e7.

    Article  Google Scholar 

  31. Modi N, Bétrémieux P, Midgley J, Hartnoll G . Postnatal weight loss and contraction of the extracellular compartment is triggered by atrial natriuretic peptide. Early Hum Dev 2000; 59: 201–208.

    Article  CAS  PubMed  Google Scholar 

  32. Modi N . Clinical implications of postnatal alterations in body water distribution. Semin Neonatol 2003; 8: 301–306.

    Article  PubMed  Google Scholar 

  33. Widdowson EM . Nutrition from conception to extreme old age. Food Nutr (Roma) 1982; 8: 32–40.

    CAS  Google Scholar 

  34. Brozek J, Grande F, Anderson JT, Keys A . Densitometric analysis of body composition: revision of some quantitative assumptions. Ann NY Acad Sci 1963; 110: 113–140.

    Article  CAS  PubMed  Google Scholar 

  35. McGowan A, Jordan M, MacGregor J . Skinfold thickness in neonates. Biol Neonate 1974; 25: 66–84.

    Article  CAS  PubMed  Google Scholar 

  36. Yssing M, Friis-Hansen B . Body composition of newborn infants. Acta Paediatr 1965; 54: 117–118.

    Article  Google Scholar 

  37. Burmeister W . The extracellular (thiosulfate) space in the human body during growth. Ann Univ Sarav Med 1961; 9: 167–219.

    PubMed  Google Scholar 

  38. Butte NF, Hopkinson JM, Wong WW, Smith EO, Ellis KJ . Body composition during the first 2 years of life: an updated reference. Pediatr Res 2000; 47: 578–585.

    Article  CAS  PubMed  Google Scholar 

  39. Au CP, Raynes-Greenow CH, Turner RM, Carberry AE, Jeffery H . Fetal and maternal factors associated with neonatal adiposity as measured by air displacement plethysmography: a large cross-sectional study. Early Hum Dev 2013; 89: 839–843.

    Article  PubMed  Google Scholar 

  40. Andersen GS, Girma T, Wells JC, Kaestel P, Leventi M, Hother AL et al. Body composition from birth to 6 mo of age in Ethiopian infants: reference data obtained by air-displacement plethysmography. Am J Clin Nutr 2013; 98: 885–894.

    Article  CAS  PubMed  Google Scholar 

  41. Harrington TA, Thomas EL, Frost G, Modi N, Bell JD . Distribution of adipose tissue in the newborn. Pediatr Res 2004; 55: 437–441.

    Article  PubMed  Google Scholar 

  42. Olhager E, Flinke E, Hannerstad U, Forsum E . Studies on human body composition during the first 4 months of life using magnetic resonance imaging and isotope dilution. Pediatr Res 2003; 54: 906–912.

    Article  PubMed  Google Scholar 

  43. Modi N, Thomas EL, Uthaya SN, Umranikar S, Bell JD, Yajnik C . Whole body magnetic resonance imaging of healthy newborn infants demonstrates increased central adiposity in Asian Indians. Pediatr Res 2009; 65: 584–587.

    Article  PubMed  Google Scholar 

  44. Andres A, Shankar K, Badger TM . Body fat mass of exclusively breastfed infants born to overweight mothers. J Acad Nutr Diet 2012; 112: 991–995.

    Article  PubMed  Google Scholar 

  45. Fields DA, Demerath EW, Pietrobelli A, Chandler-Laney PC . Body composition at 6 months of life: comparison of air displacement plethysmography and dual-energy X-ray absorptiometry. Obesity 2012; 20: 2302–2306.

    Article  PubMed  Google Scholar 

  46. Forbes GB . Lean body mass-body fat interrelationships in humans. Nutr Rev 1987; 45: 225–231.

    Article  CAS  PubMed  Google Scholar 

  47. Jordan PN, Hall KD . Dynamic coordination of macronutrient balance during infant growth: insights from a mathematical model. Am J Clin Nutr 2008; 87: 692–703.

    Article  CAS  PubMed  Google Scholar 

  48. Butte NF, Wong WW, Hopkinson JM, Heinz CJ, Mehta NR, Smith EO . Energy requirements derived from total energy expenditure and energy deposition during the first 2 y of life. Am J Clin Nutr 2000; 72: 1558–1569.

    Article  CAS  PubMed  Google Scholar 

  49. Forbes RM, Cooper AR, Mitchell HH . The composition of the adult human body as determined by chemical analysis. J Biol Chem 1953; 203: 359–366.

    CAS  PubMed  Google Scholar 

  50. Spray CM, Widdowson EM . The effect of growth and development on the composition of mammals. Br J Nutr 1950; 4: 332–353.

    Article  CAS  PubMed  Google Scholar 

  51. Clarys JP, Provyn S, Marfell-Jones MJ . Cadaver studies and their impact on the understanding of human adiposity. Ergonomics 2005; 48: 1445–1461.

    Article  CAS  PubMed  Google Scholar 

  52. Clarys JP, Martin AD, Drinkwater DT . Gross tissue weights in the human body by cadaver dissection. Hum Biol 1984; 56: 459–473.

    CAS  PubMed  Google Scholar 

  53. von Bezold A . Das shemische Skelett der Wirbelthiere. Ztschr Wissensch Zool 1858; 9: 240.

    Google Scholar 

  54. Bernstein I . Fetal body composition. Curr Opin Clin Nutr Metab Care 2005; 8: 613–617.

    Article  PubMed  Google Scholar 

  55. Bernstein IM, Catalano PM . Ultrasonographic estimation of fetal body composition for children of diabetic mothers. Investig Radiol 1991; 26: 722–726.

    Article  CAS  Google Scholar 

  56. Bernstein IM, Goran MI, Amini SB, Catalano PM . Differential growth of fetal tissues during the second half of pregnancy. Am J Obstet Gynecol 1997; 176: 28–32.

    Article  CAS  PubMed  Google Scholar 

  57. Law TL, Korte JE, Katikaneni LD, Wagner CL, Ebeling MD, Newman RB . Ultrasound assessment of intrauterine growth restriction: relationship to neonatal body composition. Am J Obstet Gynecol 2011; 205: e1–e6.

    Article  Google Scholar 

  58. Moyer-Mileur LJ, Slater H, Thomson JA, Mihalopoulos N, Byrne J, Varner MW . Newborn adiposity measured by plethysmography is not predicted by late gestation two-dimensional ultrasound measures of fetal growth. J Nutr 2009; 139: 1772–1778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Valensise H, Larciprete G, Arduini D, De Lorenzo A . The fetal body compartments and their detection during pregnancy. A review. Acta Diabetol 2003; 40: S79–S82.

    Article  PubMed  Google Scholar 

  60. Winn HN, Holcomb WL . Fetal nonmuscular soft tissue: a prenatal assessment. J Ultrasound Med 1993; 12: 197–199.

    Article  CAS  PubMed  Google Scholar 

  61. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK . Estimation of fetal weight with the use of head, body, and femur measurements—a prospective study. Am J Obstet Gynecol 1985; 151: 333–337.

    Article  CAS  PubMed  Google Scholar 

  62. Galan HL, Rigano S, Radaelli T, Cetin I, Bozzo M, Chyu J et al. Reduction of subcutaneous mass, but not lean mass, in normal fetuses in Denver, Colorado. Am J Obstet Gynecol 2001; 185: 839–844.

    Article  CAS  PubMed  Google Scholar 

  63. Hure AJ, Collins CE, Giles WB, Paul JW, Smith R . Greater maternal weight gain during pregnancy predicts a large but lean fetal phenotype: a prospective cohort study. Matern Child Health J 2011; 16: 1374–1384.

    Article  Google Scholar 

  64. Platz E, Newman R . Diagnosis of IUGR: traditional biometry. Semin Perinatol 2008; 32: 140–147.

    Article  PubMed  Google Scholar 

  65. Gardosi J, Francis A . A customized standard to assess fetal growth in a US population. Am J Obstet Gynecol 2009; 201: 25 e1–e7.

    Article  Google Scholar 

  66. Uotila J, Dastidar P, Heinonen T, Ryymin P, Punnonen R, Laasonen E . Magnetic resonance imaging compared to ultrasonography in fetal weight and volume estimation in diabetic and normal pregnancy. Acta Obstet Gynecol Scand 2000; 79: 255–259.

    Article  CAS  PubMed  Google Scholar 

  67. Baker PN, Johnson IR, Gowland PA, Hykin J, Harvey PR, Freeman A et al. Fetal weight estimation by echo-planar magnetic resonance imaging. Lancet 1994; 343: 644–645.

    Article  CAS  PubMed  Google Scholar 

  68. Kacem Y, Cannie MM, Kadji C, Dobrescu O, Lo Zito L, Ziane S et al. Fetal weight estimation: comparison of two-dimensional US and MR imaging assessments. Radiology 2013; 267: 902–910.

    Article  PubMed  Google Scholar 

  69. Smith FW . The potential use of nuclear magnetic resonance imaging in pregnancy. J Perinat Med 1985; 13: 265–276.

    Article  CAS  PubMed  Google Scholar 

  70. Anblagan D, Deshpande R, Jones NW, Costigan C, Bugg G, Raine-Fenning N et al. Measurement of fetal fat in utero in normal and diabetic pregnancies using magnetic resonance imaging. Ultrasound Obstet Gynecol 2013; 42: 335–340.

    Article  CAS  PubMed  Google Scholar 

  71. Lowe TW, Weinreb J, Santos-Ramos R, Cunningham FG . Magnetic resonance imaging in human pregnancy. Obstet Gynecol 1985; 66: 629–633.

    CAS  PubMed  Google Scholar 

  72. Smith FW, Adam AH, Phillips WD . NMR imaging in pregnancy. Lancet 1983; 1: 61–62.

    Article  CAS  PubMed  Google Scholar 

  73. Smith FW, Kent C, Abramovich DR, Sutherland HW . Nuclear magnetic resonance imaging—a new look at the fetus. Br J Obstet Gynaecol 1985; 92: 1024–1033.

    Article  CAS  PubMed  Google Scholar 

  74. Piers LS, Soares MJ, Frandsen SL, O'Dea K . Indirect estimates of body composition are useful for groups but unreliable in individuals. Int J Obes Relat Metab Disord 2000; 24: 1145–1152.

    Article  CAS  PubMed  Google Scholar 

  75. Wells JC, Fewtrell MS . Measuring body composition. Arch Dis Child 2006; 91: 612–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Farr V . Skinfold thickness as an indication of maturity of the newborn. Arch Dis Child 1966; 41: 301–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tennefors C, Forsum E . Assessment of body fatness in young children using the skinfold technique and BMI vs body water dilution. Eur J Clin Nutr 2004; 58: 541–547.

    Article  CAS  PubMed  Google Scholar 

  78. Kabir N, Forsum E . Estimation of total body fat and subcutaneous adipose tissue in full-term infants less than 3 months old. Pediatr Res 1993; 34: 448–454.

    Article  CAS  PubMed  Google Scholar 

  79. Goran MI, Gower BA, Treuth M, Nagy TR . Prediction of intra-abdominal and subcutaneous abdominal adipose tissue in healthy pre-pubertal children. Int J Obes Relat Metab Disord 1998; 22: 549–558.

    Article  CAS  PubMed  Google Scholar 

  80. Eriksson JG, Kajantie E, Lampl M, Osmond C, Barker DJ . Small head circumference at birth and early age at adiposity rebound. Acta Physiol 2014; 210: 154–160.

    Article  CAS  Google Scholar 

  81. Evelein AM, Visseren FL, van der Ent CK, Grobbee DE, Uiterwaal CS . Excess early postnatal weight gain leads to increased abdominal fat in young children. Int J Pediatr 2012; 2012: 141656.

    Article  PubMed  PubMed Central  Google Scholar 

  82. De Lucia Rolfe E, Modi N, Uthaya S, Hughes IA, Dunger DB, Acerini C et al. Ultrasound estimates of visceral and subcutaneous-abdominal adipose tissues in infancy. J Obes 2013; 2013: 951954.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Brambilla P, Bedogni G, Moreno LA, Goran MI, Gutin B, Fox KR et al. Crossvalidation of anthropometry against magnetic resonance imaging for the assessment of visceral and subcutaneous adipose tissue in children. Int J Obes (Lond) 2006; 30: 23–30.

    Article  CAS  Google Scholar 

  84. Stomfai S, Ahrens W, Bammann K, Kovacs E, Marild S, Michels N et al. Intra- and inter-observer reliability in anthropometric measurements in children. Int J Obes (Lond) 2011; 35: S45–S51.

    Article  Google Scholar 

  85. West J, Manchester B, Wright J, Lawlor DA, Waiblinger D . Reliability of routine clinical measurements of neonatal circumferences and research measurements of neonatal skinfold thicknesses: findings from the Born in Bradford study. Paediatr Perinat Epidemiol 2011; 25: 164–171.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Roggero P, Gianni ML, Amato O, Piemontese P, Morniroli D, Wong WW et al. Evaluation of air-displacement plethysmography for body composition assessment in preterm infants. Pediatr Res 2012; 72: 316–320.

    Article  CAS  PubMed  Google Scholar 

  87. Fields DA, Allison DB . Air-displacement plethysmography pediatric option in 2-6 years old using the four-compartment model as a criterion method. Obesity 2012; 20: 1732–1737.

    Article  PubMed  Google Scholar 

  88. Schoeller DA Hydrometry. In: Heymsfield S, Lohman T, Wang Z-M, Going S (eds). Human Body Composition 918, 2nd edn. Human Kinetics: Champaign, IL, USA, 2005, p 536.

    Google Scholar 

  89. Speakman JR, Nair KS, Goran MI . Revised equations for calculating CO2 production from doubly labeled water in humans. Am J Physiol 1993; 264: E912–E917.

    Article  CAS  PubMed  Google Scholar 

  90. Wang Z, Deurenberg P, Wang W, Pietrobelli A, Baumgartner RN, Heymsfield SB . Hydration of fat-free body mass: new physiological modeling approach. Am J Physiol 1999; 276: E995–E1003.

    Article  CAS  PubMed  Google Scholar 

  91. Hashimoto K, Wong WW, Thomas AJ, Uvena-Celebrezze J, Huston-Pressley L, Amini SB et al. Estimation of neonatal body composition: isotope dilution versus total-body electrical conductivity. Biol Neonate 2002; 81: 170–175.

    Article  CAS  PubMed  Google Scholar 

  92. Laskey MA . Dual-energy X-ray absorptiometry and body composition. Nutrition 1996; 12: 45–51.

    Article  CAS  PubMed  Google Scholar 

  93. Brunton JA, Bayley HS, Atkinson SA . Validation and application of dual-energy x-ray absorptiometry to measure bone mass and body composition in small infants. Am J Clin Nutr 1993; 58: 839–845.

    Article  CAS  PubMed  Google Scholar 

  94. Elowsson P, Forslund AH, Mallmin H, Feuk U, Hansson I, Carlsten J . An evaluation of dual-energy X-Ray absorptiometry and underwater weighing to estimate body composition by means of carcass analysis in piglets. J Nutr 1998; 128: 1543–1549.

    Article  CAS  PubMed  Google Scholar 

  95. Testolin CG, Gore R, Rivkin T, Horlick M, Arbo J, Wang Z et al. Dual-energy X-ray absorptiometry: analysis of pediatric fat estimate errors due to tissue hydration effects. J Appl Physiol 2000; 89: 2365–2372.

    Article  CAS  PubMed  Google Scholar 

  96. Koo WW, Hammami M, Shypailo RJ, Ellis KJ . Bone and body composition measurements of small subjects: discrepancies from software for fan-beam dual energy X-ray absorptiometry. J Am Coll Nutr 2004; 23: 647–650.

    Article  PubMed  Google Scholar 

  97. Fields DA, Goran MI . Body composition techniques and the four-compartment model in children. J Appl Physiol 2000; 89: 613–620.

    Article  CAS  PubMed  Google Scholar 

  98. Binkovitz LA, Henwood MJ . Pediatric DXA: technique and interpretation. Pediatr Radiol 2007; 37: 21–31.

    Article  PubMed  Google Scholar 

  99. Task Force on Bone Densitometry (H-30) CRCPD. Technical White Paper: Bone Densitometry. Frankfort, KY, 2006.

  100. Agur A . Grant's Atlas of Anatomy. Lippincott, Williams, and Wilkins: Philadelphia, 2009; 484–485.

    Google Scholar 

  101. Wells JC, Fuller NJ, Dewit O, Fewtrell MS, Elia M, Cole TJ . Four-component model of body composition in children: density and hydration of fat-free mass and comparison with simpler models. Am J Clin Nutr 1999; 69: 904–912.

    Article  CAS  PubMed  Google Scholar 

  102. Lohman TG, Going SB . Multicomponent models in body composition research: opportunities and pitfalls. Basic Life Sci 1993; 60: 53–58.

    CAS  PubMed  Google Scholar 

  103. Lohman TG . Assessment of body composition in children. Pediatr Exerc Sci 1989; 1: 19–30.

    Article  Google Scholar 

  104. Shen W, Liu H, Punyanitya M, Chen J, Heymsfield SB . Pediatric obesity phenotyping by magnetic resonance methods. Curr Opin Clin Nutr Metab Care 2005; 8: 595–601.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Samara A, Ventura EE, Alfadda AA, Goran MI . Use of MRI and CT for fat imaging in children and youth: what have we learned about obesity, fat distribution and metabolic disease risk? Obes Rev 2012; 13: 723–732.

    Article  CAS  PubMed  Google Scholar 

  106. Kullberg J, Karlsson AK, Stokland E, Svensson PA, Dahlgren J . Adipose tissue distribution in children: automated quantification using water and fat MRI. J Magn Reson Imaging 2010; 32: 204–210.

    Article  PubMed  Google Scholar 

  107. Bauer JS, Noel PB, Vollhardt C, Much D, Degirmenci S, Brunner S et al. Accuracy and reproducibility of adipose tissue measurements in young infants by whole body magnetic resonance imaging. PLoS One 2015; 10: e0117127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Taicher GZ, Tinsley FC, Reiderman A, Heiman ML . Quantitative magnetic resonance (QMR) method for bone and whole-body-composition analysis. Anal Bioanal Chem 2003; 377: 990–1002.

    Article  CAS  PubMed  Google Scholar 

  109. Napolitano A, Miller SR, Murgatroyd PR, Coward WA, Wright A, Finer N et al. Validation of a quantitative magnetic resonance method for measuring human body composition. Obesity (Silver Spring) 2008; 16: 191–198.

    Article  Google Scholar 

  110. Gallagher D, Thornton JC, He Q, Wang J, Yu W, Bradstreet TE et al. Quantitative magnetic resonance fat measurements in humans correlate with established methods but are biased. Obesity (Silver Spring) 2010; 18: 2047–2054.

    Article  Google Scholar 

  111. Zanghi BM, Cupp CJ, Pan Y, Tissot-Favre DG, Milgram NW, Nagy TR et al. Noninvasive measurements of body composition and body water via quantitative magnetic resonance, deuterium water, and dual-energy x-ray absorptiometry in cats. Am J Vet Res 2013; 74: 721–732.

    Article  CAS  PubMed  Google Scholar 

  112. Zanghi BM, Cupp CJ, Pan Y, Tissot-Favre DG, Milgram NW, Nagy TR et al. Noninvasive measurements of body composition and body water via quantitative magnetic resonance, deuterium water, and dual-energy x-ray absorptiometry in awake and sedated dogs. Am J Vet Res 2013; 74: 733–743.

    Article  CAS  PubMed  Google Scholar 

  113. Mitchell AD, Rosebrough RW, Taicher GZ, Kovner I . In vivo measurement of body composition of chickens using quantitative magnetic resonance. Poult Sci 2011; 90: 1712–1719.

    Article  CAS  PubMed  Google Scholar 

  114. Andres A, Gomez-Acevedo H, Badger TM . Quantitative nuclear magnetic resonance to measure fat mass in infants and children. Obesity 2011; 19: 2089–2095.

    Article  CAS  PubMed  Google Scholar 

  115. Andres A, Mitchell AD, Badger TM . QMR: validation of an infant and children body composition instrument using piglets against chemical analysis. Int J Obes 2010; 34: 775–780.

    Article  CAS  Google Scholar 

  116. Mitchell A . Validation of QMR body composition analysis for infants using Piglet Model. Pediatr Res 2010; 9: 9.

    Google Scholar 

  117. Kovner I, Taicher GZ, Mitchell AD . Calibration and validation of EchoMRI™ whole body composition analysis based on chemical analysis of piglets, in comparison with the same for DXA. Int J Body Compos Res 2010; 8: 17–29.

    PubMed  PubMed Central  Google Scholar 

  118. Taicher G, Kovner I, Mitchell AD . Accuracy and precision for EchoMRI-Infants™ body composition analysis in piglets. 17th European Congress on Obesity. Poster ECO: PS 5-1, Amsterdam, The Netherlands.

  119. Toro-Ramos T, Paley CW, Lin S, Yu W, Pi-Sunyer X, Gallagher D (eds). Reliability of the EchoMRI-Infant System for Water and Fat Measurements in Newborns. Obesity 2013, The 31st Annual Scientific Meeting of The Obesity Society; 2013; Atlanta, Georgia.

Download references

Acknowledgements

We gratefully acknowledge Martica Heaner, PhD for her editorial assistance. This study was supported by National Institutes of Health Grants UO1-DK-094463 (Diversityfellowship); P30-DK-26687; UL1-TR000040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Toro-Ramos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on European Journal of Clinical Nutrition website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toro-Ramos, T., Paley, C., Pi-Sunyer, F. et al. Body composition during fetal development and infancy through the age of 5 years. Eur J Clin Nutr 69, 1279–1289 (2015). https://doi.org/10.1038/ejcn.2015.117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2015.117

This article is cited by

Search

Quick links