Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

IL12B polymorphisms are linked but not associated with Plasmodium falciparum parasitemia: a familial study in Burkina Faso

Abstract

Chromosome 5q31–q33 has been linked to Plasmodium falciparum parasitemia in several independent studies. This chromosomal region contains numerous immunoregulatory genes. Among these, IL12B that encodes the p40 subunit of interleukin-12 (IL-12) appeared to be a promising functional candidate gene, and IL12Bpro, a promoter polymorphism, was associated with mortality from severe malaria in children. In this study, we characterized genetic variation in IL12B in 215 individuals belonging to 34 families and evaluated linkage and association of parasitemia with IL12B polymorphisms and haplotypes. We searched for IL12B polymorphisms in the coding regions and the corresponding intron–exon borders. We also examined IL12Bpro and IL12B 3′untranslated region (UTR) polymorphisms, which are thought to influence the production of IL-12. We showed a high level of conservation of IL12B-coding regions and identified five polymorphisms in introns and the two polymorphisms in the promoter and the 3′UTR regions. Although IL12B polymorphisms were linked to parasitemia, there was association of parasitemia with neither polymorphisms nor haplotypes. We cannot exclude that an unknown IL12B cis-regulatory element polymorphism affects both IL-12 production and parasitemia. However, our results suggest that genetic variation in IL12B does not explain differences in parasitemia in individuals living in an endemic area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Kwiatkowski DP . How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 2005; 77: 171–192.

    Article  CAS  Google Scholar 

  2. Rihet P, Traore Y, Abel L, Aucan C, Traore-Leroux T, Fumoux F . Malaria in humans: Plasmodium falciparum blood infection levels are linked to chromosome 5q31–q33. Am J Hum Genet 1998; 63: 498–505.

    Article  CAS  Google Scholar 

  3. Flori L, Kumulungui B, Aucan C, Esnault C, Traore AS, Fumoux F et al. Linkage and association between Plasmodium falciparum blood infection levels and chromosome 5q31–q33. Genes Immun 2003; 4: 265–268.

    Article  CAS  Google Scholar 

  4. Hernandez-Valladares M, Rihet P, ole-MoiYoi OK, Iraqi FA . Mapping of a new quantitative trait locus for resistance to malaria in mice by a comparative mapping approach with human Chromosome 5q31–q33. Immunogenetics 2004; 56: 115–117.

    Article  CAS  Google Scholar 

  5. Ohashi J, Naka I, Patarapotikul J, Hananantachai H, Looareesuwan S, Tokunaga K . A single-nucleotide substitution from C to T at position -1055 in the IL-13 promoter is associated with protection from severe malaria in Thailand. Genes Immun 2003; 4: 528–531.

    Article  CAS  Google Scholar 

  6. Morahan G, Boutlis CS, Huang D, Pain A, Saunders JR, Hobbs MR et al. A promoter polymorphism in the gene encoding interleukin-12 p40 (IL12B) is associated with mortality from cerebral malaria and with reduced nitric oxide production. Genes Immun 2002; 3: 414–418.

    Article  CAS  Google Scholar 

  7. Gyan BA, Goka B, Cvetkovic JT, Kurtzhals JL, Adabayeri V, Perlmann H et al. Allelic polymorphisms in the repeat and promoter regions of the interleukin-4 gene and malaria severity in Ghanaian children. Clin Exp Immunol 2004; 138: 145–150.

    Article  CAS  Google Scholar 

  8. Vafa M, Maiga B, Berzins K, Hayano M, Bereczky S, Dolo A et al. Associations between the IL-4 -590T allele and Plasmodium falciparum infection prevalence in asymptomatic Fulani of Mali. Microbes Infect 2007; 9: 1043–1048.

    Article  CAS  Google Scholar 

  9. Mangano VD, Luoni G, Rockett KA, Sirima BS, Konate A, Forton J et al. Interferon regulatory factor-1 polymorphisms are associated with the control of Plasmodium falciparum infection. Genes Immun 2008; 9: 122–129.

    Article  CAS  Google Scholar 

  10. Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med 1989; 170: 827–845.

    Article  CAS  Google Scholar 

  11. Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ . IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 2004; 202: 96–105.

    Article  CAS  Google Scholar 

  12. Ong’echa JM, Remo AM, Kristoff J, Hittner JB, Were T, Ouma C et al. Increased circulating interleukin (IL)-23 in children with malarial anemia: in vivo and in vitro relationship with co-regulatory cytokines IL-12 and IL-10. Clin Immunol 2008; 126: 211–221.

    Article  Google Scholar 

  13. Stevenson MM, Tam MF, Wolf SF, Sher A . IL-12-induced protection against blood-stage Plasmodium chabaudi AS requires IFN-gamma and TNF-alpha and occurs via a nitric oxide-dependent mechanism. J Immunol 1995; 155: 2545–2556.

    CAS  PubMed  Google Scholar 

  14. Hoffman SL, Crutcher JM, Puri SK, Ansari AA, Villinger F, Franke ED et al. Sterile protection of monkeys against malaria after administration of interleukin-12. Nat Med 1997; 3: 80–83.

    Article  CAS  Google Scholar 

  15. Bastos KR, Barboza R, Elias RM, Sardinha LR, Grisotto MG, Marinho CR et al. Impaired macrophage responses may contribute to exacerbation of blood-stage Plasmodium chabaudi chabaudi malaria in interleukin-12-deficient mice. J Interferon Cytokine Res 2002; 22: 1191–1199.

    Article  CAS  Google Scholar 

  16. Su Z, Stevenson MM . IL-12 is required for antibody-mediated protective immunity against blood-stage Plasmodium chabaudi AS malaria infection in mice. J Immunol 2002; 168: 1348–1355.

    Article  CAS  Google Scholar 

  17. Luty AJ, Perkins DJ, Lell B, Schmidt-Ott R, Lehman LG, Luckner D et al. Low interleukin-12 activity in severe Plasmodium falciparum malaria. Infect Immun 2000; 68: 3909–3915.

    Article  CAS  Google Scholar 

  18. Perkins DJ, Weinberg JB, Kremsner PG . Reduced interleukin-12 and transforming growth factor-beta1 in severe childhood malaria: relationship of cytokine balance with disease severity. J Infect Dis 2000; 182: 988–992.

    Article  CAS  Google Scholar 

  19. Boutlis CS, Lagog M, Chaisavaneeyakorn S, Misukonis MA, Bockarie MJ, Mgone CS et al. Plasma interleukin-12 in malaria-tolerant papua new guineans: inverse correlation with Plasmodium falciparum parasitemia and peripheral blood mononuclear cell nitric oxide synthase activity. Infect Immun 2003; 71: 6354–6357.

    Article  CAS  Google Scholar 

  20. Morahan G, Huang D, Wu M, Holt BJ, White GP, Kendall GE et al. Association of IL12B promoter polymorphism with severity of atopic and non-atopic asthma in children. Lancet 2002; 360: 455–459.

    Article  CAS  Google Scholar 

  21. Muller-Berghaus J, Kern K, Paschen A, Nguyen XD, Kluter H, Morahan G et al. Deficient IL-12p70 secretion by dendritic cells based on IL12B promoter genotype. Genes Immun 2004; 5: 431–434.

    Article  CAS  Google Scholar 

  22. Morahan G, Huang D, Ymer SI, Cancilla MR, Stephen K, Dabadghao P et al. Linkage disequilibrium of a type 1 diabetes susceptibility locus with a regulatory IL12B allele. Nat Genet 2001; 27: 218–221.

    Article  CAS  Google Scholar 

  23. Morahan G, Kaur G, Singh M, Rapthap CC, Kumar N, Katoch K et al. Association of variants in the IL12B gene with leprosy and tuberculosis. Tissue Antigens 2007; 69 (Suppl 1): 234–236.

    Article  CAS  Google Scholar 

  24. Filipe-Santos O, Bustamante J, Chapgier A, Vogt G, de Beaucoudrey L, Feinberg J et al. Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Semin Immunol 2006; 18: 347–361.

    Article  CAS  Google Scholar 

  25. Noguchi E, Yokouchi Y, Shibasaki M, Kamioka M, Yamakawa-Kobayashi K, Matsui A et al. Identification of missense mutation in the IL12B gene: lack of association between IL12B polymorphisms and asthma and allergic rhinitis in the Japanese population. Genes Immun 2001; 2: 401–403.

    Article  CAS  Google Scholar 

  26. Huang D, Cancilla MR, Morahan G . Complete primary structure, chromosomal localisation, and definition of polymorphisms of the gene encoding the human interleukin-12 p40 subunit. Genes Immun 2000; 1: 515–520.

    Article  CAS  Google Scholar 

  27. Zwiers A, Seegers D, Heijmans R, Koch A, Hampe J, Nikolaus S et al. Definition of polymorphisms and haplotypes in the interleukin-12B gene: association with IL-12 production but not with Crohn's disease. Genes Immun 2004; 5: 675–677.

    Article  CAS  Google Scholar 

  28. Lake SL, Blacker D, Laird NM . Family-based tests of association in the presence of linkage. Am J Hum Genet 2000; 67: 1515–1525.

    Article  CAS  Google Scholar 

  29. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  Google Scholar 

  30. International-HapMap-Consortium. A haplotype map of the human genome. Nature 2005; 437: 1299–1320.

    Article  Google Scholar 

  31. Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 2007; 80: 273–290.

    Article  CAS  Google Scholar 

  32. Stanilova S, Miteva L . Taq-I polymorphism in 3′UTR of the IL-12B and association with IL-12p40 production from human PBMC. Genes Immun 2005; 6: 364–366.

    Article  CAS  Google Scholar 

  33. Seegers D, Zwiers A, Strober W, Pena AS, Bouma G . A TaqI polymorphism in the 3′UTR of the IL-12 p40 gene correlates with increased IL-12 secretion. Genes Immun 2002; 3: 419–423.

    Article  CAS  Google Scholar 

  34. Prakash D, Fesel C, Jain R, Cazenave PA, Mishra GC, Pied S . Clusters of cytokines determine malaria severity in Plasmodium falciparum-infected patients from endemic areas of Central India. J Infect Dis 2006; 194: 198–207.

    Article  CAS  Google Scholar 

  35. Keller CC, Yamo O, Ouma C, Ong’echa JM, Ounah D, Hittner JB et al. Acquisition of hemozoin by monocytes down-regulates interleukin-12 p40 (IL-12p40) transcripts and circulating IL-12p70 through an IL-10-dependent mechanism: in vivo and in vitro findings in severe malarial anemia. Infect Immun 2006; 74: 5249–5260.

    Article  CAS  Google Scholar 

  36. Yilmaz V, Yentur SP, Saruhan-Direskeneli G . IL-12 and IL-10 polymorphisms and their effects on cytokine production. Cytokine 2005; 30: 188–194.

    Article  CAS  Google Scholar 

  37. Peng JC, Abu Bakar S, Richardson MM, Jonsson JJ, Frazer IH, Nielsen LK et al. IL10 and IL12B polymorphisms each influence IL-12p70 secretion by dendritic cells in response to LPS. Immunol Cell Biol 2006; 84: 227–232.

    Article  CAS  Google Scholar 

  38. Romero JF, Ibrahim GH, Renggli J, Himmelrich H, Graber P, Corradin G . IL-12p40-independent induction of protective immunity upon multiple Plasmodium berghei irradiated sporozoite immunizations. Parasite Immunol 2007; 29: 541–548.

    Article  CAS  Google Scholar 

  39. Doolan DL, Hoffman SL . IL-12 and NK cells are required for antigen-specific adaptive immunity against malaria initiated by CD8+ T cells in the Plasmodium yoelii model. J Immunol 1999; 163: 884–892.

    CAS  PubMed  Google Scholar 

  40. Doolan DL, Hoffman SL . The complexity of protective immunity against liver-stage malaria. J Immunol 2000; 165: 1453–1462.

    Article  CAS  Google Scholar 

  41. Flori L, Sawadogo S, Esnault C, Delahaye NF, Fumoux F, Rihet P . Linkage of mild malaria to the major histocompatibility complex in families living in Burkina Faso. Hum Mol Genet 2003; 12: 375–378.

    Article  CAS  Google Scholar 

  42. Rihet P, Flori L, Tall F, Traore AS, Fumoux F . Hemoglobin C is associated with reduced Plasmodium falciparum parasitemia and low risk of mild malaria attack. Hum Mol Genet 2004; 13: 1–6.

    Article  CAS  Google Scholar 

  43. Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N . Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci USA 1992; 89: 5847–5851.

    Article  CAS  Google Scholar 

  44. Hall MA, McGlinn E, Coakley G, Fisher SA, Boki K, Middleton D et al. Genetic polymorphism of IL-12 p40 gene in immune-mediated disease. Genes Immun 2000; 1: 219–224.

    Article  CAS  Google Scholar 

  45. Abecasis GR, Cookson WO . GOLD—graphical overview of linkage disequilibrium. Bioinformatics 2000; 16: 182–183.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all volunteer families of Bobo-Dioulasso (Burkina Faso, West Africa). This work was supported by the French Ministry of Research and Technology (Agence Nationale de la Recherche, Microbiology–Immunology Program). MB and AA were supported by a studentship from the French Ministry of Research and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Rihet.

Additional information

Conflict of interest

The authors state no conflict of interest.

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbier, M., Atkinson, A., Fumoux, F. et al. IL12B polymorphisms are linked but not associated with Plasmodium falciparum parasitemia: a familial study in Burkina Faso. Genes Immun 9, 405–411 (2008). https://doi.org/10.1038/gene.2008.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.31

Keywords

This article is cited by

Search

Quick links