Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Variations of the perforin gene in patients with multiple sclerosis

Abstract

Perforin is involved in cell-mediated cytotoxicity and mutations of its gene (PRF1) cause familial hemophagocytic lymphohistiocytosis (FLH2). PRF1 sequencing in 190 patients with multiple sclerosis and 268 controls detected two FLH2-associated variations (A91V, N252S) in both groups and six novel mutations (C999T, G1065A, G1428A, A1620G, G719A, C1069T) in patients. All together, carriers of these variations were more frequent in patients than in controls (phenotype frequency: 17 vs 9%, P=0.0166; odds ratio (OR)=2.06, 95% confidence interval (CI): 1.13–3.77). Although A91V was the most frequent variation and displayed a trend of association with multiple sclerosis (MS) in the first population of patients and controls (frequency of the 91V allele: 0.076 vs 0.043, P=0.044), we used it as a marker to confirm PRF1 involvement in MS and assessed its frequency in a second population of 966 patients and 1520 controls. Frequency of the 91V allele was significantly higher in patients than in controls also in the second population (0.075 vs 0.058%, P=0.019). In the combined cohorts of 1156 patients and 1788 controls, presence of the 91V allele in single or double dose conferred an OR=1.38 (95% CI=1.10–1.74). These data suggest that A91V and possibly other perforin variations indicate susceptibility to MS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Compston A, Coles A . Multiple sclerosis. Lancet 2002; 359: 1221–1231.

    Article  Google Scholar 

  2. Weinshenker BG . The natural history of multiple sclerosis. Neurol Clin 1995; 13: 119–146.

    Article  CAS  Google Scholar 

  3. Sospedra M, Martin R . Immunology of multiple sclerosis. Annu Rev Immunol 2005; 23: 683–747.

    Article  CAS  Google Scholar 

  4. Steinman L, Martin R, Bernard C, Conlon P, Oksenberg JR . Multiple sclerosis: deeper understanding of its pathogenesis reveals new targets for therapy. Annu Rev Neurosci 2002; 25: 491–505.

    Article  CAS  Google Scholar 

  5. Howe CL, Rodriguez M . Remyelination as neuroprotection. In: Waxman SG (ed). Multiple Sclerosis as a Neuronal Disease. Elsevier Academic Press: San Diego, 2005, pp 389–419.

    Chapter  Google Scholar 

  6. Babbe H, Roers A, Waisman A, Goebels N, Hohlfeld R, Friese M et al. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 2000; 192: 393–404.

    Article  CAS  Google Scholar 

  7. Bitsch A, Schuchardt J, Bunkowski S, Kulnann T, Brück W . Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 2000; 123: 1174–1183.

    Article  Google Scholar 

  8. Trapani JA, Smyth MJ . Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002; 2: 735–747.

    Article  CAS  Google Scholar 

  9. Stepp SE, Dufourcq-Lagelouse R, Le Deist F, Bhawan S, Certain S, Mathew PA et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 1999; 286: 957–959.

    Article  Google Scholar 

  10. Clementi R, zur Stadt U, Savoldi G, Varoitto S, Conter V, De Fusco C et al. Six novel mutations in the PRF1 gene in children with haemophagocytic lymphohistiocytosis. J Med Genet 2001; 38: 643–646.

    Article  CAS  Google Scholar 

  11. Clementi R, Chiocchetti A, Cappellano G, Cerutti E, Ferretti M, Orilieri E et al. Variations of the perforin gene in patients with autoimmunity/lymphoproliferation and defective Fas function. Blood 2006; 108: 3079–3084.

    Article  CAS  Google Scholar 

  12. Orilieri E, Cappellano G, Clementi R, Cometa A, Ferretti M, Cerutti E et al. Variations of the perforin gene in patients with type 1 diabetes. Diabetes 2008; 57: 1078–1083.

    Article  CAS  Google Scholar 

  13. Goertsches R, Villoslada P, Comabella M, Montalban X, Navarro A, de la Concha EG . A genomic screen of Spanish multiple sclerosis patients reveals multiple loci associated with the disease. J Neuroimmunol 2003; 143: 124–128.

    Article  CAS  Google Scholar 

  14. Goertsches R, Comabella M, Navarro A, Perkal H, Montalban X . Genetic association between polymorphisms in the ADAMTS14 gene and multiple sclerosis. J Neuroimmunol 2005; 164: 140–147.

    Article  CAS  Google Scholar 

  15. Goertsches R, Baranzini SE, Morcillo C, Nos C, Camiña M, Oksenberg JR et al. Evidence for association of chromosome 10 open reading frame (C10orf27) gene polymorphisms and multiple sclerosis. Mult Scler 2008; 14: 412–414.

    Article  CAS  Google Scholar 

  16. Trambas C, Gallo F, Pende D, Marcenaro S, Moretta L, De Fusco C et al. A single amino acid change, A91V, leads to conformational changes that can impair processing to the active form of perforin. Blood 2005; 106: 932–937.

    Article  CAS  Google Scholar 

  17. Voskoboinik I, Thia MC, Trapani JA . A functional analysis of the putative polymorphisms A91V and N252S and 22 missense perforin mutations associated with familial hemophagocytic lymphohistiocytosis. Blood 2005; 105: 4700–4706.

    Article  CAS  Google Scholar 

  18. Risma KA, Frayer RW, Filipovich AH, Sumegi J . Aberrant maturation of mutant perforin underlies the clinical diversity of hemophagocytic lymphohistiocytosis. J Clin Invest 2006; 116: 182–192.

    Article  CAS  Google Scholar 

  19. Voskoboinik I, Sutton VR, Ciccone A, House CM, Chia J, Darcy PK et al. Perforin activity and immune homeostasis: the common A91V polymorphism in perforin results in both pre- and post-synaptic defects in function. Blood 2007; 110: 1184–1190.

    Article  CAS  Google Scholar 

  20. Mehta PA, Davies SM, Kumar A, Devidas M, Lee S, Zamzow T et al. Perforin polymorphism A91V and susceptibility to B-precursor childhood acute lymphoblastic leukaemia: a report from the Children's Oncology group. Leukemia 2006; 20: 1539–1541.

    Article  CAS  Google Scholar 

  21. Clementi R, Locatelli F, Dupré L, Garaventa A, Emmi L, Bregni M et al. A proportion of patients with lymphoma may harbor mutations of the perforin gene. Blood 2005; 105: 4424–4428.

    Article  CAS  Google Scholar 

  22. Voskoboinik I, Smyth MJ, Trapani JA . Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 2006; 6: 940–952.

    Article  CAS  Google Scholar 

  23. Cartegni L, Chew SL, Krainer AR . Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 2002; 3: 285–298.

    Article  CAS  Google Scholar 

  24. Lavner Y . Kotlar codon bias as a factor in regulating expression via translation rate in the human genome. Gene 2005; 345: 127–138.

    Article  CAS  Google Scholar 

  25. Kotlar D, Lavner Y . The action of selection on codon bias in the human genome is related to frequency, complexity, and chronology of amino acids. BMC Genomics 2006; 7: 67.

    Article  Google Scholar 

  26. Shabalina SA, Ogurtsov AY, Spiridonov NA . A periodic pattern of mRNA secondary structure created by the genetic code. Nucleic Acids Res 2006; 34: 2428–2437.

    Article  CAS  Google Scholar 

  27. Komar AA . Genetics. SNPs, silent but not invisible. Science 2007; 315: 466–467.

    Article  CAS  Google Scholar 

  28. Martin MM, Buckenberger JA, Jiang J, Malana GE, Nuovo GJ, Chotani M et al. The human angiotensin II type 1 receptor +1166 A/C polymorphism attenuates microRNA-155 binding. J Biol Chem 2007; 282: 24262–24269.

    Article  CAS  Google Scholar 

  29. Lee-Kirsch MA, Gong M, Chowdhury D, Senenko L, Engel K, Lee YA et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet 2007; 39: 1065–1067.

    Article  CAS  Google Scholar 

  30. Lesage S, Zouali H, Cézard JP, Colombel JF, Belaiche J, Almer S et al. CARD15/NOD2 mutational analysis and genotype–phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet 2002; 70: 845–857.

    Article  CAS  Google Scholar 

  31. Lunemann JD, Munz C . Epstein–Barr virus and multiple sclerosis. Curr Neurol 2007; 7: 253–258.

    Article  CAS  Google Scholar 

  32. Chuang HC, Lay JD, Hsieh WC, Su IJ . Pathogenesis and mechanism of disease progression from hemophagocytic lymphohistiocytosis to Epstein–Barr virus-associated T-cell lymphoma: nuclear factor-kappaB pathway as a potential therapeutic target. Cancer Sci 2007; 98: 1281–1287.

    Article  CAS  Google Scholar 

  33. Su MW, Pyarajan S, Chang JH, Yu CL, Jin YJ, Stierhof YD et al. Fratricide of CD8+ cytotoxic T lymphocytes is dependent on cellular activation and perforin-mediated killing. Eur J Immunol 2004; 34: 2459–2470.

    Article  CAS  Google Scholar 

  34. Badovinac VP, Hamilton SE, Harty JT . Viral infection results in massive CD8+ T cell expansion and mortality in vaccinated perforin-deficient mice. Immunity 2003; 18: 463–474.

    Article  CAS  Google Scholar 

  35. Zhou S, Ou R, Huang L, Moskophidis D . Critical role for perforin-, Fas/FasL-, and TNFR1-mediated cytotoxic pathways in down-regulation of antigen-specific T cells during persistent viral infection. J Virol 2002; 76: 829–840.

    Article  CAS  Google Scholar 

  36. de Saint Basile G, Fischer A . Defective cytotoxic granule-mediated cell death pathway impairs T lymphocyte homeostasis. Curr Opin Rheumatol 2003; 15: 436–445.

    Article  Google Scholar 

  37. Comi C, Leone M, Bonissoni S, DeFranco S, Bottarel F, Mezzatesta C et al. Defective T cell Fas function in patients with multiple sclerosis. Neurology 2000; 55: 921–927.

    Article  CAS  Google Scholar 

  38. Chiocchetti A, Comi C, Indelicato M, Castelli L, Mesturini R, Bensi T et al. Osteopontin gene haplotypes correlate with multiple sclerosis development and progression. J Neuroimmunol 2005; 63: 172–178.

    Article  Google Scholar 

  39. Hur EM, Youssef S, Haws ME, Zhang SY, Sobel RA, Steinman L . Osteopontin-induced relapse and progression of autoimmune brain disease through enhanced survival of activated T cells. Nat Immunol 2007; 8: 74–83.

    Article  CAS  Google Scholar 

  40. Comabella M, Pericot I, Goertsches R, Nos C, Castello M, Blas Navarro J et al. Plasma osteopontin levels in multiple sclerosis. J Neuroimmunol 2005; 158: 231–239.

    Article  CAS  Google Scholar 

  41. Vogt MH, Lopatinskaya L, Smits M, Polman CH, Nagelkerken L . Elevated osteopontin levels in active relapsing-remitting multiple sclerosis. Ann Neurol 2003; 53: 819–822.

    Article  CAS  Google Scholar 

  42. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50: 121–127.

    Article  CAS  Google Scholar 

  43. Weinshenker BG, Bass B, Rice GP, Noseworthy J, Carriere W, Baskerville J et al. The natural history of multiple sclerosis: a geographically based study: I. Clinical course and disability. Brain 1989; 112: 133–146.

    Article  Google Scholar 

  44. Trojano M, Avorio C, Mannari C, Calò A, De Robertis F, Serio G et al. Multivariate analysis of predictive factors of multiple sclerosis course with a validated method to assess clinical events. J Neurol Neurosurg Psychiatry 1995; 58: 300–306.

    Article  CAS  Google Scholar 

  45. Lublin FD, Reingold SC . Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 1996; 48: 907–911.

    Article  Google Scholar 

  46. Roxburgh RH, Seaman SR, Masterman T, Hensiek AE, Sawcer SJ, Vukusic S et al. Multiple sclerosis severity score: using disability and disease duration to rate disease severity. Neurology 2005; 64: 1144–1151.

    Article  CAS  Google Scholar 

  47. International Committee of Medical Journal Editors. Protection of patients' rights to privacy. BMJ 1995; 311: 1272.

    Article  Google Scholar 

  48. D'Alfonso S, Bolognesi E, Guerini FR, Barizzone N, Bocca S, Ferrante D et al. A sequence variation in the MOG gene is involved in multiple sclerosis susceptibility in Italy. Genes Immun 2008; 9: 7–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by FISM grant 2005/R/10 (Genoa), Telethon grant E1170 (Rome), AIRC (Milan), PRIN Project (MIUR, Rome), Compagnia di San Paolo (Turin), Fondazione Cassa di Risparmio di Cuneo (Cuneo), Regione Piemonte (Ricerca Sanitaria Finalizzata Project and Ricerca Sanitaria Applicata-CIPE Project), Associazione ‘Amici di Jean’ (Turin), Fondazione Lagrange (Turin) and Centro Dino Ferrari (Milan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Dianzani.

Additional information

Disclosure

The authors report no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cappellano, G., Orilieri, E., Comi, C. et al. Variations of the perforin gene in patients with multiple sclerosis. Genes Immun 9, 438–444 (2008). https://doi.org/10.1038/gene.2008.35

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.35

Keywords

This article is cited by

Search

Quick links