Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Evidence for associations between the purinergic receptor P2X7 (P2RX7) and toxoplasmosis

Abstract

Congenital Toxoplasma gondii infection can result in intracranial calcification, hydrocephalus and retinochoroiditis. Acquired infection is commonly associated with ocular disease. Pathology is characterized by strong proinflammatory responses. Ligation of ATP by purinergic receptor P2X7, encoded by P2RX7, stimulates proinflammatory cytokines and can lead directly to killing of intracellular pathogens. To determine whether P2X7 has a role in susceptibility to congenital toxoplasmosis, we examined polymorphisms at P2RX7 in 149 child/parent trios from North America. We found association (FBAT Z-scores ±2.429; P=0.015) between the derived C(+)G(−) allele (f=0.68; OR=2.06; 95% CI: 1.14–3.75) at single-nucleotide polymorphism (SNP) rs1718119 (1068T>C; Thr-348-Ala), and a second synonymous variant rs1621388 in linkage disequilibrium with it, and clinical signs of disease per se. Analysis of clinical subgroups showed no association with hydrocephalus, with effect sizes for associations with retinal disease and brain calcifications enhanced (OR=3.0–4.25; 0.004<P<0.009) when hydrocephalus was removed from the analysis. Association with toxoplasmic retinochoroiditis was replicated (FBAT Z-scores ±3.089; P=0.002) in a small family-based study (60 families; 68 affected offspring) of acquired infection in Brazil, where the ancestral T(+) allele (f=0.296) at SNP rs1718119 was strongly protective (OR=0.27; 95% CI: 0.09–0.80).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. McLeod R, Boyer K, Karrison T, Kasza K, Swisher C, Roizen N et al. Outcome of treatment for congenital toxoplasmosis, 1981–2004: the National Collaborative Chicago-Based, Congenital Toxoplasmosis Study. Clin Infect Dis 2006; 42: 1383–1394.

    Article  PubMed  Google Scholar 

  2. McAuley J, Boyer KM, Patel D, Mets M, Swisher C, Roizen N et al. Early and longitudinal evaluations of treated infants and children and untreated historical patients with congenital toxoplasmosis: the Chicago Collaborative Treatment Trial. Clin Infect Dis 1994; 18: 38–72.

    Article  CAS  PubMed  Google Scholar 

  3. McLeod R, Kieffer F, Sautter M, Hosten T, Pelloux H . Why prevent, diagnose and treat congenital toxoplasmosis? Mem Inst Oswaldo Cruz 2009; 104: 320–344.

    Article  PubMed  Google Scholar 

  4. Desmonts G, Couvreur J . [Congenital toxoplasmosis. Prospective study of the outcome of pregnancy in 542 women with toxoplasmosis acquired during pregnancy]. Ann Pediatr (Paris) 1984; 31: 805–809.

    CAS  Google Scholar 

  5. Remington JS, McLeod R, Thullie P, Desmonts G . Toxoplasmosis. In: Remington JS, Baker C, Wilson E, Klein JO (eds). Infectious Diseases of the Fetus and Newborn Infant, 6th edn. WB Saunders: Philadelphia, PA, 2005, pp 947–1091.

    Google Scholar 

  6. Mack DG, Johnson JJ, Roberts F, Roberts CW, Estes RG, David C et al. HLA-class II genes modify outcome of Toxoplasma gondii infection. Int J Parasitol 1999; 29: 1351–1358.

    Article  CAS  PubMed  Google Scholar 

  7. Dunn D, Wallon M, Peyron F, Petersen E, Peckham C, Gilbert R . Mother-to-child transmission of toxoplasmosis: risk estimates for clinical counselling. Lancet 1999; 353: 1829–1833.

    Article  CAS  PubMed  Google Scholar 

  8. Desmonts G, Couvreur J . Congenital toxoplasmosis. A prospective study of 378 pregnancies. N Engl J Med 1974; 290: 1110–1116.

    Article  CAS  PubMed  Google Scholar 

  9. Roberts F, Kuo A, Jones LA, McLeod R, Roberts CW . Ocular toxoplasmosis: clinical features, pathology, pathogenesis, animal models and immune responses. In: Ajioka JW, Soldati-Favre D (eds). The Biology of Toxoplasma gondii. Horizon Scientific Press: Norwich, UK, 2007.

    Google Scholar 

  10. Roberts F, Mets MB, Ferguson DJ, O’Grady R, O’Grady C, Thulliez P et al. Histopathological features of ocular toxoplasmosis in the fetus and infant. Arch Ophthalmol 2001; 119: 51–58.

    CAS  PubMed  Google Scholar 

  11. Lahmar I, Abou-Bacar A, Abdelrahman T, Guinard M, Babba H, Ben Yahia S et al. Cytokine profiles in toxoplasmic and viral uveitis. J Infect Dis 2009; 199: 1239–1249.

    Article  CAS  PubMed  Google Scholar 

  12. Bahia-Oliveira LMG, da Silva JA, Peixoto-Rangel AL, Boechat MS, Oliveira AM, Massara CL et al. Host immune response to Toxoplasma gondii and Ascaris lumbricoides in a highly endemic area: evidence of parasite co-immunomodulation properties influencing the outcome of both infections. Mem Inst Oswaldo Cruz 2009; 104: 273–280.

    Article  CAS  PubMed  Google Scholar 

  13. Yarovinsky F . Toll-like receptors and their role in host resistance to Toxoplasma gondii. Immunol Lett 2008; 119: 17–21.

    Article  CAS  PubMed  Google Scholar 

  14. Peixoto-Rangel AL, Miller EN, Castellucci L, Jamieson SE, Peixe RG, de Souza Elias L et al. Candidate gene analysis of acquired ocular toxoplasmosis in Brazil: evidence for a role for toll-like receptor 9 (TLR9). Mem Inst Oswaldo Cruz 2009; 104: 1187–1190.

    Article  CAS  PubMed  Google Scholar 

  15. Kawai T, Akira S . Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 2007; 13: 460–469.

    Article  CAS  PubMed  Google Scholar 

  16. Piccini A, Carta S, Tassi S, Lasiglie D, Fossati G, Rubartelli A . ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci USA 2008; 105: 8067–8072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Melchiorri L, Baricordi OR et al. Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages. J Immunol 1997; 159: 1451–1458.

    CAS  PubMed  Google Scholar 

  18. Hitziger N, Dellacasa I, Albiger B, Barragan A . Dissemination of Toxoplasma gondii to immunoprivileged organs and role of Toll/interleukin-1 receptor signalling for host resistance assessed by in vivo bioluminescence imaging. Cell Microbiol 2005; 7: 837–848.

    Article  CAS  PubMed  Google Scholar 

  19. Fairbairn IP, Stober CB, Kumararatne DS, Lammas DA . ATP-mediated killing of intracellular mycobacteria by macrophages is a P2X(7)-dependent process inducing bacterial death by phagosome-lysosome fusion. J Immunol 2001; 167: 3300–3307.

    Article  CAS  PubMed  Google Scholar 

  20. Stober CB, Lammas DA, Li CM, Kumararatne DS, Lightman SL, McArdle CA . ATP-mediated killing of Mycobacterium bovis bacille Calmette-Guerin within human macrophages is calcium dependent and associated with the acidification of mycobacteria-containing phagosomes. J Immunol 2001; 166: 6276–6286.

    Article  CAS  PubMed  Google Scholar 

  21. Hewinson J, Moore SF, Glover C, Watts AG, MacKenzie AB . A key role for redox signaling in rapid P2X7 receptor-induced IL-1 beta processing in human monocytes. J Immunol 2008; 180: 8410–8420.

    Article  CAS  PubMed  Google Scholar 

  22. Fernando SL, Saunders BM, Sluyter R, Skarratt KK, Goldberg H, Marks GB et al. A polymorphism in the P2X7 gene increases susceptibility to extrapulmonary tuberculosis. Am J Respir Crit Care Med 2007; 175: 360–366.

    Article  CAS  PubMed  Google Scholar 

  23. Wilson CB, Tsai V, Remington JS . Failure to trigger the oxidative metabolic burst by normal macrophages: possible mechanism for survival of intracellular pathogens. J Exp Med 1980; 151: 328–346.

    Article  CAS  PubMed  Google Scholar 

  24. Murray HW, Nathan CF, Cohn ZA . Macrophage oxygen-dependent antimicrobial activity. IV. Role of endogenous scavengers of oxygen intermediates. J Exp Med 1980; 152: 1610–1624.

    Article  CAS  PubMed  Google Scholar 

  25. Murray HW . Macrophage oxygen-dependent killing of intracellular parasites: toxoplasma and leishmania. Adv Exp Med Biol 1983; 162: 127–143.

    Article  CAS  PubMed  Google Scholar 

  26. Kim L, Denkers EY . Toxoplasma gondii triggers Gi-dependent PI 3-kinase signaling required for inhibition of host cell apoptosis. J Cell Sci 2006; 119: 2119–2126.

    Article  CAS  PubMed  Google Scholar 

  27. Denkers EY, Butcher BA, Del Rio L, Kim L . Manipulation of mitogen-activated protein kinase/nuclear factor-kappaB-signaling cascades during intracellular Toxoplasma gondii infection. Immunol Rev 2004; 201: 191–205.

    Article  CAS  PubMed  Google Scholar 

  28. Coutinho-Silva R, Monteiro da Cruz C, Persechini PM, Ojcius DM . The role of P2 receptors in controlling infections by intracellular pathogens. Purinergic Signal 2007; 3: 83–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heiss K, Janner N, Mahnss B, Schumacher V, Koch-Nolte F, Haag F et al. High sensitivity of intestinal CD8+ T cells to nucleotides indicates P2X7 as a regulator for intestinal T cell responses. J Immunol 2008; 181: 3861–3869.

    Article  CAS  PubMed  Google Scholar 

  30. Cascabulho CM, Menna-Barreto RF, Coutinho-Silva R, Persechini PM, Henriques-Pons A . P2X7 modulatory web in Trypanosoma cruzi infection. Parasitol Res 2008; 103: 829–838.

    Article  CAS  PubMed  Google Scholar 

  31. Jamieson SE, de Roubaix LA, Cortina-Borja M, Tan HK, Mui EJ, Cordell HJ et al. Genetic and epigenetic factors at COL2A1 and ABCA4 influence clinical outcome in congenital toxoplasmosis. PLoS ONE 2008; 3: e2285.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shemon AN, Sluyter R, Fernando SL, Clarke AL, Dao-Ung LP, Skarratt KK et al. A Thr357 to Ser polymorphism in homozygous and compound heterozygous subjects causes absent or reduced P2X7 function and impairs ATP-induced mycobacterial killing by macrophages. J Biol Chem 2006; 281: 2079–2086.

    Article  CAS  PubMed  Google Scholar 

  33. Saunders BM, Fernando SL, Sluyter R, Britton WJ, Wiley JS . A loss-of-function polymorphism in the human P2X7 receptor abolishes ATP-mediated killing of mycobacteria. J Immunol 2003; 171: 5442–5446.

    Article  CAS  PubMed  Google Scholar 

  34. Sluyter R, Shemon AN, Wiley JS . Glu496 to Ala polymorphism in the P2X7 receptor impairs ATP-induced IL-1 beta release from human monocytes. J Immunol 2004; 172: 3399–3405.

    Article  CAS  PubMed  Google Scholar 

  35. Sibley LD, Khan A, Ajioka JW, Rosenthal BM . Genetic diversity of Toxoplasma gondii in animals and humans. Philos Trans R Soc Lond B Biol Sci 2009; 364: 2749–2761.

    Article  PubMed  PubMed Central  Google Scholar 

  36. NCBI. Entrez SNP. http://www.ncbi.nlm.nih.gov/sites/entrez, 2009.

  37. Gu BJ, Sluyter R, Skarratt KK, Shemon AN, Dao-Ung LP, Fuller SJ et al. An Arg307 to Gln polymorphism within the ATP-binding site causes loss of function of the human P2X7 receptor. J Biol Chem 2004; 279: 31287–31295.

    Article  CAS  PubMed  Google Scholar 

  38. Wiley JS, Dao-Ung LP, Li C, Shemon AN, Gu BJ, Smart ML et al. An Ile-568 to Asn polymorphism prevents normal trafficking and function of the human P2X7 receptor. J Biol Chem 2003; 278: 17108–17113.

    Article  CAS  PubMed  Google Scholar 

  39. Fuller SJ, Stokes L, Skarratt KK, Gu BJ, Wiley JS . Genetics of the P2X7 receptor and human disease. Purinergic Signal 2009; 5: 257–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nejentsev S, Walker N, Riches D, Egholm M, Todd JA . Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 2009; 324: 387–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Knapp M . A note on power approximations for the transmission disequilibrium test. Am J Hum Genet 1999; 64: 1177–1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bahia-Oliveira LM, Jones JL, Azevedo-Silva J, Alves CC, Orefice F, Addiss DG . Highly endemic, waterborne toxoplasmosis in north Rio de Janeiro state, Brazil. Emerg Infect Dis 2003; 9: 55–62.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Laird NM, Horvath S, Xu X . Implementing a unified approach to family-based tests of association. Genet Epidemiol 2000; 19 (Suppl 1): S36–S42.

    Article  PubMed  Google Scholar 

  44. Horvath S, Xu X, Laird NM . The family based association test method: strategies for studying general genotype—phenotype associations. Eur J Hum Genet 2001; 9: 301–306.

    Article  CAS  PubMed  Google Scholar 

  45. Cordell HJ, Barratt BJ, Clayton DG . Case/pseudocontrol analysis in genetic association studies: a unified framework for detection of genotype and haplotype associations, gene-gene and gene-environment interactions, and parent-of-origin effects. Genet Epidemiol 2004; 26: 167–185.

    Article  PubMed  Google Scholar 

  46. Clayton D, Jones H . Transmission disequilibrium tests for extended marker haplotypes. Am J Hum Genet 1999; 65: 1161–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ettinger NA, Duggal P, Braz RF, Nascimento ET, Beaty TH, Jeronimo SM et al. Genetic admixture in Brazilians exposed to infection with Leishmania chagasi. Ann Hum Genet 2009; 73: 304–313.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The clinical evaluation, sample collection and preparation, and parts of the genotyping for the NCCCTS cohort were funded by NIH RO1s NIAID TMP 16945 01-20, 27530 01-20, 4328 01-11, 071319-01, FDA RFA 8-86 01-2; March of Dimes 6-528 01-4; The Research to Prevent Blindness Foundation; United Airlines Foundation; Stanley Foundation; Hyatt Hotels Foundation; gifts from the Morel, Kapnick, Kiewit, Langel, Taub, Rooney-Alden, Schilling, Mann and Cromwell families; and the Finley Samuel Trust. We gratefully acknowledge the patients, their families and their physicians for their participation in the NCCCTS. The many other contributions made to the NCCCTS are acknowledged in full in Cascabulho et al.30 For the Brazilian study we thank the ophthalmologists Dr Daíse Malheiros Meira, Dr Elisa Waked, Dr Fernanda Porto, Dr Fernando Oréfice, Dr Gustavo Heringer and Dr Wesley Campos for examining patients. This research was funded in Brazil by CAPES (BEX 2371/06-05), CNPq (151950/2008-3 and 558876/2008-0) and FAPERJ (E-26/112045/2008). Genetic studies carried out in Cambridge were funded by the Guide Dogs for the Blind Association in the UK. NCS and JSW were supported by an Australian Research Council Discovery Project grant (DP0666515) and MPL was the recipient of a Researcher Exchange, Training and Travel Award from the Australian Research Council/National Health and Research Council Research Network for Parasitology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Blackwell.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamieson, S., Peixoto-Rangel, A., Hargrave, A. et al. Evidence for associations between the purinergic receptor P2X7 (P2RX7) and toxoplasmosis. Genes Immun 11, 374–383 (2010). https://doi.org/10.1038/gene.2010.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2010.31

Keywords

This article is cited by

Search

Quick links