Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Current status and recent advances of next generation sequencing techniques in immunological repertoire

Abstract

To ward off a wide variety of pathogens, the human adaptive immune system harbors a vast array of T-cell receptors (TCRs) and B-cell receptors (BCRs), collectively referred to as the immune repertoire. High-throughput sequencing (HTS) of TCR/BCR genes allows in-depth molecular analysis of T/B-cell clones, providing an unprecedented level of detail when examining the T/B-cell repertoire of individuals. It can evaluate TCR/BCR complementarity-determining region 3 (CDR3) diversity and assess the clonal composition, including the size of the repertoire; similarities between repertoires; V(D)J segment use; nucleotide insertions and deletions; CDR3 lengths; and amino acid distributions along the CDR3s at sequence-level resolution. Deep sequencing of B-cell and T-cell repertoires offers the potential for a quantitative understanding of the adaptive immune system in healthy and disease states. Recently, paired sequencing strategies have also been developed, which can provide information about the identity of immune receptor pairs encoded by individual T or B lymphocytes. HTS technology provides a previously unimaginable amount of sequence data, accompanied, however, by numerous challenges associated with error correction and interpretation that remain to be solved. The review details some of the technologies and some of the recent achievements in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Tonegawa S . Somatic generation of antibody diversity. Nature 1983; 302: 575–581.

    CAS  PubMed  Google Scholar 

  2. Davis MM, Bjorkman PJ . T-cell antigen receptor genes and T-cell recognition. Nature 1988; 334: 395–402.

    CAS  PubMed  Google Scholar 

  3. Pannetier C, Cochet M, Darche S, Casrouge A, Zoller M, Kourilsky P . The sizes of the CDR3 hypervariable regions of the murine T-cell receptor beta chains vary as a function of the recombined germ-line segments. Proc Natl Acad Sci USA 1993; 90: 4319–4323.

    CAS  PubMed  Google Scholar 

  4. Cabaniols JP, Fazilleau N, Casrouge A, Kourilsky P, Kanellopoulos JM . Most alpha/beta T cell receptor diversity is due to terminal deoxynucleotidyl transferase. J Exp Med 2001; 194: 1385–1390.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Miles JJ, Douek DC, Price DA . Bias in the αβ T-cell repertoire: implications for disease pathogenesis and vaccination. Immunol Cell Biol 2011; 89: 375–387.

    CAS  PubMed  Google Scholar 

  6. Li Z, Woo CJ, Iglesias-Ussel MD, Ronai D, Scharff MD . The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev 2004; 18: 1–11.

    PubMed  Google Scholar 

  7. Weinstein JA, Jiang N, White RA, Fisher DS, Quake SR . High-throughput sequencing of the zebrafish antibody repertoire. Science 2009; 324: 807–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Batrak V, Blagodatski A, Buerstedde JM . Understanding the immunoglobulin locus specificity of hypermutation. Methods Mol Biol 2011; 745: 311–326.

    CAS  PubMed  Google Scholar 

  9. Nikolich-Zugich J, Slifka MK, Messaoudi I . The many important facets of T-cell repertoire diversity. Nat Rev Immunol 2004; 4: 123–132.

    CAS  PubMed  Google Scholar 

  10. Harty JT, Badovinac VP . Shaping and reshaping CD8 T cell memory. Nat Rev Immunol 2008; 8: 107–119.

    CAS  PubMed  Google Scholar 

  11. Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P . A direct estimate of the human alphabeta T cell receptor diversity. Science 1999; 286: 958–961.

    CAS  PubMed  Google Scholar 

  12. Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P . Diversity of human alpha beta T cell receptors. Science 2000; 288: 1135.

    CAS  PubMed  Google Scholar 

  13. Woodsworth DJ, Castellarin M, Holt RA . Sequence analysis of T-cell repertoires in health and disease. Genome Med 2013; 5: 1–13.

    Google Scholar 

  14. Maciejewski JP, O'Keefe C, Gondek L, Tiu R . Immune-mediated bone marrow failure syndromes of progenitor and stem cells: molecular analysis of cytotoxic T cell clones. Folia Histochem Cytobiol 2007; 45: 5–14.

    CAS  PubMed  Google Scholar 

  15. Diu A, Romagne F, Genevee C, Rocher C, Bruneau JM, David A et al. Fine specificity of monoclonal antibodies directed at human T cell receptor variable regions: comparison with oligonucleotide-deriven amplification for evaluation of Vβ expression. Eur J Immunol 1993; 23: 1422–1429.

    CAS  PubMed  Google Scholar 

  16. Klarenbeek PL, de Hair MJ, Doorenspleet ME, van Schaik BD, Esveldt RE, van de Sande MG et al. Inflamed target tissue provides a specific niche for highly expanded T-cell clones in early human autoimmune disease. Ann Rheum Dis 2012; 71: 1088–1093.

    CAS  PubMed  Google Scholar 

  17. Li S, Lefranc MP, Miles JJ, Alamyar E, Giudicelli V, Duroux P et al. IMGT/HighV QUEST paradigm for T cell receptor IMGT clonotype diversity and next generation repertoire immunoprofiling. Nat Commun 2013; 4: 2333.

    PubMed  PubMed Central  Google Scholar 

  18. Sui W, Hou X, Zou G, Che W, Yang M, Zheng C et al. Composition and variation analysis of the TCR-chain CDR3 repertoire in systemic lupus erythematosus using high-throughput sequencing. Mol Immunol 2015; 67: 455–464.

    CAS  PubMed  Google Scholar 

  19. Wilson PC, Andrews SF . Tools to therapeutically harness the human antibody response. Nat Rev Immunol 2012; 12: 709–719.

    CAS  PubMed  Google Scholar 

  20. DeKosky BJ, Ippolito GC, Deschner RP, Lavinder JJ, Wine Y, Rawlings BM et al. High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat Biotechnol 2013; 31: 166–169.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Furutani S, Nagai H, Takamura Y, Aoyama Y, Kubo I . Detection of expressed gene in isolated single cells in microchambers by a novel hot cell-direct RT-PCR method. Analyst 2012; 137: 2951–2957.

    CAS  PubMed  Google Scholar 

  22. Maecker HT, Lindstrom TM, Robinson WH, Utz PJ, Hale M, Boyd SD et al. New tools for classification and monitoring of autoimmune diseases. Nat Rev Rheumatol 2012; 8: 317–328.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ, Kahsai O et al. Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells. Blood 2009; 114: 4099–4107.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Warren RL, Freeman JD, Zeng T, Choe G, Munro S, Moore R et al. Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes. Genome Res 2011; 21: 790–797.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Venturi V, Quigley MF, Greenaway HY, Ng PC, Ende ZS, McIntosh T et al. A mechanism for TCR sharing between T-cell subsets and individuals revealed by pyrosequencing. J Immunol 2011; 186: 4285–4294.

    CAS  PubMed  Google Scholar 

  26. Wang C, Sanders CM, Yang Q, Schroeder Jr HW, Wang E, Babrzadeh F et al. High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T-cell subsets. Proc Natl Acad Sci USA 2010; 107: 1518–1523.

    CAS  PubMed  Google Scholar 

  27. Venturi V, Kedzierska K, Turner SJ, Doherty PC, Davenport MP . Methods for comparing the diversity of samples of the T cell receptor repertoire. J Immunol Methods 2007; 321: 182–195.

    CAS  PubMed  Google Scholar 

  28. Keylock C . Simpson diversity and the Shannon–Wiener index as special cases of a generalized entropy. Oikos 2005; 109: 203–207.

    Google Scholar 

  29. Stewart JJ, Lee CY, Ibrahim S, Watts P, Shlomchik M, Weigert M et al. A Shannon entropy analysis of immunoglobulin and T cell receptor. Mol Immunol 1997; 34: 1067–1082.

    CAS  PubMed  Google Scholar 

  30. Wu J, Liu D, Tu W, Song W, Zhao X . T-cell receptor diversity is selectively skewed in T-cell populations of patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2015; 135: 209–216.

    CAS  PubMed  Google Scholar 

  31. Venturi V, Kedzierska K, Tanaka MM, Turner SJ, Doherty PC, Davenport MP . Method for assessing the similarity between subsets of the T cell receptor repertoire. J Immunol Methods 2008; 329: 67–80.

    CAS  PubMed  Google Scholar 

  32. Alamyar E, Duroux P, Lefranc MP, Giudicelli V . IMGTs tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/ HighV-QUEST for NGS. Methods Mol Biol 2012; 882: 569–604.

    CAS  PubMed  Google Scholar 

  33. Bolotin DA, Shugay M, Mamedov IZ, Putintseva EV, Turchaninova MA, Zvyagin IV et al. software for T-cell receptor sequencing data analysis. Nat Methods 2013; 10: 813–814.

    CAS  PubMed  Google Scholar 

  34. Nakamura Y, Komiyama T, Furue M, Gojobori T, Akiyama Y . CIG-DB: the database for human or mouse immunoglobulin and T cell receptor genes available for cancer studies. BMC Bioinformatics 2010; 11: 398.

    PubMed  PubMed Central  Google Scholar 

  35. Belz GT, Xie W, Doherty PC . Diversity of epitope and cytokine profiles for primary and secondary influenza a virus-specific CD8+ T cell responses. J Immunol 2001; 166: 4627–4633.

    CAS  PubMed  Google Scholar 

  36. Echchakir H, Dorothée G, Vergnon I, Menez J, Chouaib S, Mami-Chouaib F . Cytotoxic T lymphocytes directed against a tumor-specific mutated antigen display similar HLA tetramer binding but distinct functional avidity and tissue distribution. Proc Natl Acad Sci USA 2002; 99: 9358–9363.

    CAS  PubMed  Google Scholar 

  37. Manjunath N, Shankar P, Stockton B, Dubey PD, Lieberman J, von Andrian UH . A transgenic mouse model to analyze CD8+ effector cell differentiation in vivo. Proc Natl Acad Sci USA 1999; 96: 13932–13937.

    CAS  PubMed  Google Scholar 

  38. Gudmundsdottir H, Wells AD, Turka LA . Dynamics and requirements of T cell clonal expansion in vivo at the single-cell level: effector function is linked to proliferative capacity. J Immunol 1999; 162: 5212–5223.

    CAS  PubMed  Google Scholar 

  39. Slifka MK, Whitton JL . Functional avidity maturation of CD8+ T cells without selection of higher affinity TCR. Nat Immunol 2001; 2: 711–717.

    CAS  PubMed  Google Scholar 

  40. Manjunath N, Shankar P, Wan J, Weninger W, Crowley MA, Hieshima K et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J Clin Invest 2001; 108: 871–878.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu JL, Davis MM . Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 2000; 13: 37–45.

    CAS  PubMed  Google Scholar 

  42. Ivanov II, Schelonka RL, Zhuang Y, Gartland GL, Zemlin M, Schroeder HW Jr . Development of the expressed Ig CDR-H3 repertoire is marked by focusing of constraints in length, amino acid use, and charge that are first established in early B cell progenitors. J Immunol 2005; 174: 7773–7780.

    CAS  PubMed  Google Scholar 

  43. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC . Predominant autoantibody production by early human B cell precursors. Science 2003; 301: 1374–1377.

    CAS  PubMed  Google Scholar 

  44. Aguilera I, Melero J, Nuñez-Roldan A, Sanchez B . Molecular structure of eight human autoreactive monoclonal antibodies. Immunology 2001; 102: 273–280.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ichiyoshi Y, Casali P . Analysis of the structural correlates for antibody polyreactivity by multiple reassortments of chimeric human immuno-globulin heavy and light chain V segments. J Exp Med 1994; 180: 885–895.

    CAS  PubMed  Google Scholar 

  46. Larimore K, McCormick MW, Robins HS, Greenberg PD . Shaping of human germline IgH repertoires revealed by deep sequencing. J Immunol 2012; 189: 3221–3230.

    CAS  PubMed  Google Scholar 

  47. Yassai M, Ammon K, GovermanJ, Marrack P, Naumov Y, Gorski J . A molecular marker for thymocyte-positive selection: selection of CD4 single-positive thymocytes with shorter TCRB CDR3 during T cell development. J Immunol 2002; 168: 3801–3807.

    CAS  PubMed  Google Scholar 

  48. Pickman Y, Dunn-Walters D, Mehr R . BCR CDR3 length distributions differ between blood and spleen and between old and young patients, and TCR distributions can be used to detect myelodysplastic syndrome. Phys Biol 2013; 10: 056001.

    PubMed  Google Scholar 

  49. Freeman JD, Warren RL, Webb JR, Nelson BH, Holt RA . Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res 2009; 19: 1817–1824.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Robins HS, Srivastava SK, Campregher PV, Turtle CJ, Andriesen J, Riddell SR et al. Overlap and effective size of the human CD8+ T-cell receptor repertoire. Sci Transl Med 2010; 2: 47ra64.

    PubMed  PubMed Central  Google Scholar 

  51. Hardiman G . Next-generation antibody discovery platforms. Proc Natl Acad Sci USA 2012; 109: 18245–18246.

    CAS  PubMed  Google Scholar 

  52. Wu YC, Kipling D, Leong HS, Martin V, Ademokun AA, Dunn-Walters DK . High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations. Blood 2010; 116: 1070–1078.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Liaskou E, Henriksen EK, Holm K, Kaveh F, Hamm D, Fear J et al. High-throughput T-cell receptor sequencing across chronic liver diseases reveals distinct disease-associated repertoires. Hepatology 2015, e-pub ahead of print 7 August 2015 doi:10.1002/hep.28116.

    PubMed  Google Scholar 

  54. Even J, Lim A, Puisieux I, Ferradini L, Dietrich PY, Toubert A et al. T-cell repertoires in healthy and diseased human tissues analysed by T-cell receptor beta-chain CDR3 size determination: Evidence for oligoclonal expansions in tumours and inflammatory diseases. Res Immunol 1995; 146: 65–80.

    CAS  PubMed  Google Scholar 

  55. Manfras BJ, Terjung D, Boehm BO . Non-productive human TCRβchain genes represent V-D-J diversity before selection upon function: Insight into biased usage of TCRBD and TCRBJ genes and diversity of CDR3 region length. Hum Immunol 1999; 60: 1090–1100.

    CAS  PubMed  Google Scholar 

  56. Boyd SD, Marshall EL, Merker JD, Maniar JM, Zhang LN, Sahaf B et al. Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci Transl Med 2009; 1: 12ra23.

    PubMed  PubMed Central  Google Scholar 

  57. Krangel MS . Gene segment selection in V(D)J recombination: Accessibility and beyond. Nat Immunol 2003; 4: 624–630.

    CAS  PubMed  Google Scholar 

  58. Cibotti R, Cabaniols JP, Pannetier C, Delarbre C, Vergnon I, Kanellopoulos JM et al. Public and private Vβ T cell receptor repertoires against hen egg white lysozyme (HEL) in nontransgenic versus HEL transgenic mice. J Exp Med 1994; 180: 861–872.

    CAS  PubMed  Google Scholar 

  59. Trautmann L, Rimbert M, Echasserieau K, Saulquin X, Neveu B, Dechanet J et al. Selection of T cell clones expressing high-affinity public TCRs within human cytomegalovirus-specific CD8 T cell responses. J Immunol 2005; 175: 6123–6132.

    CAS  PubMed  Google Scholar 

  60. Boudinot P, Boubekeur S, Benmansour A . Rhabdovirus infection induces public and private T cell responses in teleost fish. J Immunol 2001; 167: 6202–6209.

    CAS  PubMed  Google Scholar 

  61. Bousso P, Casrouge A, Altman JD, Haury M, Kanellopoulos J, Abastado JP et al. Individual variations in the murine T cell response to a specific peptide reflect variability in naive repertoires. Immunity 1998; 9: 169–178.

    CAS  PubMed  Google Scholar 

  62. Madi A, Shifrut E, Reich-Zeliger S, Gal H, Best K, Ndifon W et al. T-cell receptor repertoires share a restricted set of public and abundant CDR3 sequences that are associated with self-related immunity. Genome Res 2014; 24: 1603–1612.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Klarenbeek PL, Tak PP, van Schaik BD, Zwinderman AH, Jakobs ME, Zhang Z et al. Human T-cell memory consists mainly of unexpanded clones. Immunol Lett 2010; 133: 42–48.

    CAS  PubMed  Google Scholar 

  64. Cebula A, Seweryn M, Rempala GA, Pabla SS, McIndoe RA, Denning TL et al. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature 2013; 497: 258–262.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Linton PJ, Dorshkind K . Age-related changes in lymphocyte development and function. Nat Immunol 2004; 5: 133–139.

    CAS  PubMed  Google Scholar 

  66. Murasko DM, Jiang J . Response of aged mice to primary virus infections. Immunol Rev 2005; 205: 285–296.

    CAS  PubMed  Google Scholar 

  67. Naylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E et al. The influence of age on T cell generation and TCR diversity. J Immunol 2005; 174: 7446–7452.

    CAS  PubMed  Google Scholar 

  68. Messaoudi I, Lemaoult J, Guevara-Patino JA, Metzner BM, Nikolich-Zugich J . Age-related CD8 T cell clonal expansions constrict CD8 T cell repertoire and have the potential to impair immune defense. J Exp Med 2004; 200: 1347–1358.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA . Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med 2008; 205: 711–723.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Siegrist CA, Aspinall R . B-Cell responses to vaccination at the extremes of age. Nat Rev Immunol 2009; 9: 185–194.

    CAS  PubMed  Google Scholar 

  71. Nikolich-Zugich J . T cell aging: naive but not young. J Exp Med 2005; 201: 837–840.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. van den Brink MR, Alpdogan O, Boyd RL . Strategies to enhance T-cell reconstitution in immunocompromised patients. Nat Rev Immunol 2004; 4: 856–867.

    CAS  PubMed  Google Scholar 

  73. Bolotin DA, Mamedov IZ, Britanova OV, Zvyagin IV, Shagin D, Ustyugova SV et al. Next generation sequencing for TCR repertoire profiling: platform-specific features and correction algorithms. Eur J Immunol 2012; 42: 3073–3083.

    CAS  PubMed  Google Scholar 

  74. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 2012; 30: 434–439.

    CAS  PubMed  Google Scholar 

  75. Campbell PJ, Pleasance ED, Stephens PJ, Dicks E, Rance R, Goodhead I et al. Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc Natl Acad Sci USA 2008; 105: 13081–13086.

    CAS  PubMed  Google Scholar 

  76. Wu X, Zhou T, Zhu J, Zhang B, Georgiev I, Wang C et al. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 2011; 333: 1593–1602.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Douek DC, Betts MR, Brenchley JM, Hill BJ, Ambrozak DR, Ngai KL et al. A novel approach to the analysis of specificity, clonality, and frequency of HIV-specific T cell responses reveals a potential mechanism for control of viral escape. J Immunol 2002; 168: 3099–3104.

    CAS  PubMed  Google Scholar 

  78. Bhalla AD, Gudikote JP, Wang J, Chan WK, Chang YF, Olivas OR et al. Nonsense codons trigger an RNA partitioning shift. J Biol Chem 2009; 284: 4062–4072.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang J, Vock VM, Li S, Olivas OR, Wilkinson MF . A quality control pathway that down-regulates aberrant T-cell receptor (TCR) transcripts by a mechanism requiring UPF2 and translation. J Biol Chem 2002; 277: 18489–18493.

    CAS  PubMed  Google Scholar 

  80. Li H, Ye C, Ji G, Wu X, Xiang Z, Li Y et al. Recombinatorial biases and convergent recombination determine interindividual TCRβ sharing in murine thymocytes. J Immunol 2012; 189: 2404–2413.

    CAS  PubMed  Google Scholar 

  81. Britanova OV, Putintseva EV, Shugay M, Merzlyak EM, Turchaninova MA, Staroverov DB et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J Immunol 2014; 192: 2689–2698.

    CAS  PubMed  Google Scholar 

  82. Matz M, Shagin D, Bogdanova E, Britanova O, Lukyanov S, Diatchenko L et al. Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res 1999; 27: 1558–1560.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD . Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 2001; 30: 892–897.

    CAS  PubMed  Google Scholar 

  84. Benichou J, Ben-Hamo R, Louzoun Y, Efroni S . Rep-Seq: uncovering the immunological repertoire through next-generation sequencing. Immunology 2012; 135: 183–191.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Nguyen P, Ma J, Pei D, Obert C, Cheng C, Geiger TL . Identification of errors introduced during high throughput sequencing of the T cell receptor repertoire. BMC Genomics 2011; 12: 106.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Warren RL, Nelson BH, Holt RA . Profiling model T-cell metagenomes with short reads. Bioinformatics 2009; 25: 458–464.

    CAS  PubMed  Google Scholar 

  87. Mukherjee S, Huntemann M, Ivanova N, Kyrpides NC, Pati A . Large-scale contamination of microbial isolate genomes by Illumina PhiX control. Stand Genomic Sci 2015; 10: 18.

    PubMed  PubMed Central  Google Scholar 

  88. Turchaninova MA, Britanova OV, Bolotin DA, Shugay M, Putintseva EV, Staroverov DB et al. Pairing of T-cell receptor chains via emulsion PCR. Eur J Immunol 2013; 43: 2507–2515.

    CAS  PubMed  Google Scholar 

  89. Berkland C, Pollauf E, Pack DW, Kim K . Uniform double-walled polymer microspheres of controllable shell thickness. J Control Release 2004; 96: 101–111.

    CAS  PubMed  Google Scholar 

  90. DeKosky BJ, Kojima T, Rodin A, Charab W, Ippolito GC, Ellington AD et al. In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire. Nat Med 2015; 21: 86–91.

    CAS  PubMed  Google Scholar 

  91. Howie B, Sherwood AM, Berkebile AD, Berka J, Emerson RO, Williamson DW et al. High-throughput pairing of T cell receptor α and β sequences. Sci Transl Med 2015; 7: 1–11.

    CAS  Google Scholar 

  92. Bashford-Rogers RJ, Palser AL, Huntly BJ, Rance R, Vassiliou GS, Follows GA et al. Network properties derived from deep sequencing of human B-cell receptor repertoires delineate B-cell populations. Genome Res 2013; 23: 1874–1884.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funds received from the National Natural Science Foundation of China (No. 81271810, 81571953), 12-5 state S&T Projects for infectious diseases (2012ZX10002-007), Doctoral Fund of Ministry of Education of China (20120101110009), and Zhejiang medical science and technology project (2015118507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-Y Diao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, XL., Wang, L., Ding, YL. et al. Current status and recent advances of next generation sequencing techniques in immunological repertoire. Genes Immun 17, 153–164 (2016). https://doi.org/10.1038/gene.2016.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2016.9

This article is cited by

Search

Quick links