Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oral IL-10 gene delivery in a microsphere-based formulation for local transfection and therapeutic efficacy in inflammatory bowel disease

Abstract

The objective of this study was to examine the potential of oral interleukin-10 (IL-10) gene therapy for the treatment of inflammatory bowel disease (IBD). Nanoparticles-in-microsphere oral system (NiMOS) was formulated with murine IL-10-expressing plasmid DNA in type-B gelatin nanoparticles, which were further encapsulated in poly(epsilon-caprolactone) microsphere matrix. Upon oral administration in an acute colitis model, IL-10 expression in the large intestine was measured by quantitative real-time PCR and ELISA. The locally expressed IL-10 was able to suppress the levels of proinflammatory cytokines, such as IFN-γ, TNF-α, IL-1α, IL-1β and IL-12, as well as certain chemokines. The therapeutic benefits of transfected IL-10 were further demonstrated by an increase in body weight, favorable clinical activity score, restoration in colon length and weight, and suppression of inflammatory response as assessed by tissue histological analysis and myeloperoxidase activity. The results of this study provide highly encouraging evidence of oral gene delivery and transfection and potential utility in IBD therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Blumberg RS, Saubermann LJ, Strober W . Animal models of mucosal inflammation and their relation to human inflammatory bowel disease. Curr Opin Immunol 1999; 11: 648–656.

    Article  CAS  Google Scholar 

  2. Blumberg RS, Strober W . Prospects for research in inflammatory bowel disease. JAMA 2001; 285: 643–647.

    Article  CAS  Google Scholar 

  3. Isaacs KL, Lewis JD, Sandborn WJ, Sands BE, Targan SR . State of the art: IBD therapy and clinical trials in IBD. Inflamm Bowel Dis 2005; 11 (Suppl 1): S3–S12.

    Article  Google Scholar 

  4. Korzenik JR, Podolsky DK . Evolving knowledge and therapy of inflammatory bowel disease. Nat Rev Drug Discov 2006; 5: 197–209.

    Article  CAS  Google Scholar 

  5. Fichtner-Feigl S, Fuss IJ, Preiss JC, Strober W, Kitani A . Treatment of murine Th1- and Th2-mediated inflammatory bowel disease with NF-kappa B decoy oligonucleotides. J Clin Invest 2005; 115: 3057–3071.

    Article  CAS  Google Scholar 

  6. Li MC, He SH . IL-10 and its related cytokines for treatment of inflammatory bowel disease. World J Gastroenterol 2004; 10: 620–625.

    Article  CAS  Google Scholar 

  7. Prieto J, Herraiz M, Sangro B, Qian C, Mazzolini G, Melero I et al. The promise of gene therapy in gastrointestinal and liver diseases. Gut 2003; 52 (Suppl 2): ii49–ii54.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sato Y, Takahashi S, Kinouchi Y, Shiraki M, Endo K, Matsumura Y et al. IL-10 deficiency leads to somatic mutations in a model of IBD. Carcinogenesis 2006; 27: 1068–1073.

    Article  CAS  Google Scholar 

  9. Lindsay J, Van Montfrans C, Brennan F, Van Deventer S, Drillenburg P, Hodgson H et al. IL-10 gene therapy prevents TNBS-induced colitis. Gene Therapy 2002; 9: 1715–1721.

    Article  CAS  Google Scholar 

  10. Lindsay JO, Sandison A, Cohen P, Brennan FM, Hodgson HJ . IL-10 gene therapy is therapeutic for dextran sodium sulfate-induced murine colitis. Dig Dis Sci 2004; 49: 1327–1334.

    Article  CAS  Google Scholar 

  11. Herfarth H, Scholmerich J . IL-10 therapy in Crohn's disease: at the crossroads. Treatment of Crohn's disease with the anti-inflammatory cytokine interleukin 10. Gut 2002; 50: 146–147.

    Article  CAS  Google Scholar 

  12. Nakase H, Okazaki K, Tabata Y, Ozeki M, Watanabe N, Ohana M et al. New cytokine delivery system using gelatin microspheres containing interleukin-10 for experimental inflammatory bowel disease. J Pharmacol Exp Ther 2002; 301: 59–65.

    Article  CAS  Google Scholar 

  13. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 2000; 289: 1352–1355.

    Article  CAS  Google Scholar 

  14. Barbara G, Xing Z, Hogaboam CM, Gauldie J, Collins SM . Interleukin 10 gene transfer prevents experimental colitis in rats. Gut 2000; 46: 344–349.

    Article  CAS  Google Scholar 

  15. Lecollinet S, Gavard F, Havenga MJ, Spiller OB, Lemckert A, Goudsmit J et al. Improved gene delivery to intestinal mucosa by adenoviral vectors bearing subgroup B and d fibers. J Virol 2006; 80: 2747–2759.

    Article  CAS  Google Scholar 

  16. Romano G, Pacilio C, Giordano A . Gene transfer technology in therapy: current applications and future goals. Stem Cells 1999; 17: 191–202.

    Article  CAS  Google Scholar 

  17. Dang JM, Leong KW . Natural polymers for gene delivery and tissue engineering. Adv Drug Deliv Rev 2006; 58: 487–499.

    Article  CAS  Google Scholar 

  18. Dubensky Jr TW, Liu MA, Ulmer JB . Delivery systems for gene-based vaccines. Mol Med 2000; 6: 723–732.

    Article  CAS  Google Scholar 

  19. Kaul G, Amiji M . Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm Res 2005; 22: 951–961.

    Article  CAS  Google Scholar 

  20. Lee KY, Kwon IC, Kim YH, Jo WH, Jeong SY . Preparation of chitosan self-aggregates as a gene delivery system. J Control Release 1998; 51: 213–220.

    Article  CAS  Google Scholar 

  21. Luo D, Saltzman WM . Synthetic DNA delivery systems. Nat Biotechnol 2000; 18: 33–37.

    Article  CAS  Google Scholar 

  22. Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC . Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm 2004; 57: 1–8.

    Article  CAS  Google Scholar 

  23. Martien R, Loretz B, Schnurch AB . Oral gene delivery: design of polymeric carrier systems shielding toward intestinal enzymatic attack. Biopolymers 2006; 83: 327–336.

    Article  CAS  Google Scholar 

  24. Bhavsar M, Amiji M . Gastrointestinal distribution and in vivo transfection studies with nanoparticles-in-microsphere oral system (NiMOS). J Control Release 2007; 119: 339–348.

    Article  CAS  Google Scholar 

  25. Bhavsar MD, Tiwari SB, Amiji MM . Formulation optimization for the nanoparticles-in-microsphere hybrid oral delivery system using factorial design. J Control Release 2006; 110: 422–430.

    Article  CAS  Google Scholar 

  26. Kaul G, Amiji M . Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm Res 2002; 19: 1061–1067.

    Article  CAS  Google Scholar 

  27. Kommareddy S, Amiji M . Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione. Bioconjug Chem 2005; 16: 1423–1432.

    Article  CAS  Google Scholar 

  28. Kaul G, Amiji M . Cellular interactions and in vitro DNA transfection studies with poly(ethylene glycol)-modified gelatin nanoparticles. J Pharm Sci 2005; 94: 184–198.

    Article  CAS  Google Scholar 

  29. Kommareddy S, Amiji M . Poly(ethylene glycol)-modified thiolated gelatin nanoparticles for glutathione-responsive intracellular DNA delivery. Nanomedicine 2007; 3: 32–42.

    Article  CAS  Google Scholar 

  30. Kommareddy S, Amiji M . Antiangiogenic gene therapy with systemically administered sFlt-1 plasmid DNA in engineered gelatin-based nanovectors. Cancer Gene Ther 2007; 14: 488–498.

    Article  CAS  Google Scholar 

  31. Ardizzone S, Bianchi Porro G . Inflammatory bowel disease: new insights into pathogenesis and treatment. J Intern Med 2002; 252: 475–496.

    Article  CAS  Google Scholar 

  32. Gaya DR, Russell RK, Nimmo ER, Satsangi J . New genes in inflammatory bowel disease: lessons for complex disease? Lancet 2006; 367: 1271–1284.

    Article  CAS  Google Scholar 

  33. Pender SL, Chance V, Whiting CV, Buckley M, Edwards M, Pettipher R et al. Systemic administration of the chemokine macrophage inflammatory protein 1alpha exacerbates inflammatory bowel disease in a mouse model. Gut 2005; 54: 1114–1120.

    Article  CAS  Google Scholar 

  34. Ajuebor MN, Hogaboam CM, Kunkel SL, Proudfoot AE, Wallace JL . The chemokine RANTES is a crucial mediator of the progression from acute to chronic colitis in the rat. J Immunol 2001; 166: 552–558.

    Article  CAS  Google Scholar 

  35. Lindsay JO, Ciesielski CJ, Scheinin T, Hodgson HJ, Brennan FM . The prevention and treatment of murine colitis using gene therapy with adenoviral vectors encoding IL-10. J Immunol 2001; 166: 7625–7633.

    Article  CAS  Google Scholar 

  36. Egger B, Bajaj-Elliott M, MacDonald TT, Inglin R, Eysselein VE, Buchler MW . Characterisation of acute murine dextran sodium sulphate colitis: cytokine profile and dose dependency. Digestion 2000; 62: 240–248.

    Article  CAS  Google Scholar 

  37. Gasche C, Bakos S, Dejaco C, Tillinger W, Zakeri S, Reinisch W . IL-10 secretion and sensitivity in normal human intestine and inflammatory bowel disease. J Clin Immunol 2000; 20: 362–370.

    Article  CAS  Google Scholar 

  38. van Montfrans C, Bennink RJ, de Bruin K, de Jonge W, Verberne HJ, Ten Kate FJ et al. In vivo evaluation of 111In-labeled T-lymphocyte homing in experimental colitis. J Nucl Med 2004; 45: 1759–1765.

    CAS  PubMed  Google Scholar 

  39. Melgar S, Karlsson A, Michaëlsson E . Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. Am J Physiol Gastrointest Liver Physiol 2005; 288: G1328–G1338.

    Article  CAS  Google Scholar 

  40. Talero E, Sanchez-Fidalgo S, Ramon Calvo J, Motilva V . Galanin in the trinitrobenzene sulfonic acid rat model of experimental colitis. Int Immunopharmacol 2006; 6: 1404–1412.

    Article  CAS  Google Scholar 

  41. Jordan JE, Zhao ZQ, Sato H, Taft S, Vinten-Johansen J . Adenosine A2 receptor activation attenuates reperfusion injury by inhibiting neutrophil accumulation, superoxide generation and coronary endothelial adherence. J Pharmacol Exp Ther 1997; 280: 301–309.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to David Nyugen in Professor Robert Langer's laboratory at MIT (Cambridge, MA, USA) for the use the Coulter particle size analysis instrument. Dr Takeshi Sano and Dr Alan Jerusalmi from the Beth Israel Deaconess Medical Center (Boston, MA, USA) are acknowledged for providing technical assistance with the development of murine acute colitis model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M M Amiji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhavsar, M., Amiji, M. Oral IL-10 gene delivery in a microsphere-based formulation for local transfection and therapeutic efficacy in inflammatory bowel disease. Gene Ther 15, 1200–1209 (2008). https://doi.org/10.1038/gt.2008.67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.67

Keywords

This article is cited by

Search

Quick links