Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effector memory and central memory NY-ESO-1-specific re-directed T cells for treatment of multiple myeloma

Abstract

The cancer-testis antigen NY-ESO-1 is a potential target antigen for immune therapy expressed in a subset of patients with multiple myeloma. We generated chimeric antigen receptors (CARs) recognizing the immunodominant NY-ESO-1 peptide 157–165 in the context of HLA-A*02:01 to re-direct autologous CD8+ T cells towards NY-ESO-1+ myeloma cells. These re-directed T cells specifically lysed NY-ESO-1157–165/HLA-A*02:01-positive cells and secreted IFNγ. A total of 40% of CCR7 re-directed T cells had an effector memory phenotype and 5% a central memory phenotype. Based on CCR7 cell sorting, effector and memory CAR-positive T cells were separated and CCR7+ memory cells demonstrated after antigen-specific re-stimulation downregulation of CCR7 as sign of differentiation towards effector cells accompanied by an increased secretion of memory signature cytokines such as IL-2. To evaluate NY-ESO-1 as potential target antigen, we screened 78 bone marrow biopsies of multiple myeloma patients where NY-ESO-1 protein was found to be expressed by immunohistochemistry in 9.7% of samples. Adoptively transferred NY-ESO-1-specific re-directed T cells protected mice against challenge with endogenously NY-ESO-1-positive myeloma cells in a xenograft model. In conclusion, re-directed effector- and central memory T cells specifically recognized NY-ESO-1157–165/ HLA-A*02:01-positive cells resulting in antigen-specific functionality in vitro and in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Palumbo A, Anderson K . Multiple myeloma. N Engl J Med 2011; 364: 1046–1060.

    Article  CAS  PubMed  Google Scholar 

  2. Gay F, Palumbo A . Management of older patients with multiple myeloma. Blood Rev 2011; 25: 65–73.

    Article  CAS  PubMed  Google Scholar 

  3. Brenner H, Gondos A, Pulte D . Recent major improvement in long-term survival of younger patients with multiple myeloma. Blood 2008; 111: 2521–2526.

    Article  CAS  PubMed  Google Scholar 

  4. Szmania S, Tricot G, van Rhee F . NY-ESO-1 immunotherapy for multiple myeloma. Leuk Lymphoma 2006; 47: 2037–2048.

    Article  CAS  PubMed  Google Scholar 

  5. Giaccone L, Storer B, Patriarca F, Rotta M, Sorasio R, Allione B et al. Long-term follow up of a comparison of non-myeloablative allografting with autografting for newly diagnosed myeloma. Blood 2011; 117: 6721–6727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kyle RA, Rajkumar SV . Multiple myeloma. N Engl J Med 2004; 351: 1860–1873.

    Article  CAS  PubMed  Google Scholar 

  7. Bleakley M, Riddell SR . Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer 2004; 4: 371–380.

    Article  CAS  PubMed  Google Scholar 

  8. Hambach L, Goulmy E . Immunotherapy of cancer through targeting of minor histocompatibility antigens. Curr Opin Immunol 2005; 17: 202–210.

    Article  CAS  PubMed  Google Scholar 

  9. Gnjatic S, Nishikawa H, Jungbluth AA, Gure AO, Ritter G, Jager E et al. NY-ESO-1: review of an immunogenic tumor antigen. Adv Cancer Res 2006; 95: 1–30.

    Article  CAS  PubMed  Google Scholar 

  10. Jager E, Chen YT, Drijfhout JW, Karbach J, Ringhoffer M, Jager D et al. Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 1998; 187: 265–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jager E, Gnjatic S, Nagata Y, Stockert E, Jager D, Karbach J et al. Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc Natl Acad Sci USA 2000; 97: 12198–12203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van Rhee F, Szmania SM, Zhan F, Gupta SK, Pomtree M, Lin P et al. NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood 2005; 105: 3939–3944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Held G, Matsuo M, Epel M, Gnjatic S, Ritter G, Lee SY et al. Dissecting cytotoxic T cell responses towards the NY-ESO-1 protein by peptide/MHC-specific antibody fragments. Eur J Immunol 2004; 34: 2919–2929.

    Article  CAS  PubMed  Google Scholar 

  14. Stewart-Jones G, Wadle A, Hombach A, Shenderov E, Held G, Fischer E et al. Rational development of high-affinity T-cell receptor-like antibodies. Proc Natl Acad Sci USA 2009; 106: 5784–5788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kershaw MH, Teng MW, Smyth MJ, Darcy PK . Supernatural T cells: genetic modification of T cells for cancer therapy. Nat Rev Immunol 2005; 5: 928–940.

    Article  CAS  PubMed  Google Scholar 

  16. Porter DL, Levine BL, Kalos M, Bagg A, June CH . Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hombach A, Sent D, Schneider C, Heuser C, Koch D, Pohl C et al. T-cell activation by recombinant receptors: CD28 costimulation is required for interleukin 2 secretion and receptor-mediated T-cell proliferation but does not affect receptor-mediated target cell lysis. Cancer Res 2001; 61: 1976–1982.

    CAS  PubMed  Google Scholar 

  18. Petrausch U, Haley D, Miller W, Floyd K, Urba WJ, Walker E . Polychromatic flow cytometry: a rapid method for the reduction and analysis of complex multiparameter data. Cytometry A 2006; 69: 1162–1173.

    Article  PubMed  Google Scholar 

  19. June CH . Adoptive T cell therapy for cancer in the clinic. J Clin Invest 2007; 117: 1466–1476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rosenberg SA, Dudley ME . Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 2009; 21: 233–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Willemsen RA, Ronteltap C, Chames P, Debets R, Bolhuis RL . T cell retargeting with MHC class I-restricted antibodies: the CD28 costimulatory domain enhances antigen-specific cytotoxicity and cytokine production. J Immunol 2005; 174: 7853–7858.

    Article  CAS  PubMed  Google Scholar 

  22. Hombach A, Wieczarkowiecz A, Marquardt T, Heuser C, Usai L, Pohl C et al. Tumor-specific T cell activation by recombinant immunoreceptors: CD3 zeta signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3 zeta signaling receptor molecule. J Immunol 2001; 167: 6123–6131.

    Article  CAS  PubMed  Google Scholar 

  23. Pinthus JH, Waks T, Kaufman-Francis K, Schindler DG, Harmelin A, Kanety H et al. Immuno-gene therapy of established prostate tumors using chimeric receptor-redirected human lymphocytes. Cancer Res 2003; 63: 2470–2476.

    CAS  PubMed  Google Scholar 

  24. Sallusto F, Geginat J, Lanzavecchia A . Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 2004; 22: 745–763.

    Article  CAS  PubMed  Google Scholar 

  25. van Baarle D, Kostense S, van Oers MH, Hamann D, Miedema F . Failing immune control as a result of impaired CD8+ T-cell maturation: CD27 might provide a clue. Trends Immunol 2002; 23: 586–591.

    Article  CAS  PubMed  Google Scholar 

  26. Wherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM, Antia R et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 2003; 4: 225–234.

    Article  CAS  PubMed  Google Scholar 

  27. Ahmed R, Bevan MJ, Reiner SL, Fearon DT . The precursors of memory: models and controversies. Nat Rev Immunol 2009; 9: 662–668.

    Article  CAS  PubMed  Google Scholar 

  28. Klebanoff CA, Gattinoni L, Restifo NP . CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol Rev 2006; 211: 214–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kern F, Khatamzas E, Surel I, Frommel C, Reinke P, Waldrop SL et al. Distribution of human CMV-specific memory T cells among the CD8pos. subsets defined by CD57, CD27, and CD45 isoforms. Eur J Immunol 1999; 29: 2908–2915.

    Article  CAS  PubMed  Google Scholar 

  30. Geginat J, Lanzavecchia A, Sallusto F . Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 2003; 101: 4260–4266.

    Article  CAS  PubMed  Google Scholar 

  31. Walker EB, Haley D, Petrausch U, Floyd K, Miller W, Sanjuan N et al. Phenotype and functional characterization of long-term gp100-specific memory CD8+ T cells in disease-free melanoma patients before and after boosting immunization. Clin Cancer Res 2008; 14: 5270–5283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barber A, Zhang T, Megli CJ, Wu J, Meehan KR, Sentman CL . Chimeric NKG2D receptor-expressing T cells as an immunotherapy for multiple myeloma. Exp Hematol 2008; 36: 1318–1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neeson P, Shin A, Tainton KM, Guru P, Prince HM, Harrison SJ et al. Ex vivo culture of chimeric antigen receptor T cells generates functional CD8+ T cells with effector and central memory-like phenotype. Gene Therapy 2010; 17: 1105–1116.

    Article  CAS  PubMed  Google Scholar 

  34. Cui W, Kaech SM . Generation of effector CD8+ T cells and their conversion to memory T cells. Immunol Rev 2010; 236: 151–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A . Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401: 708–712.

    Article  CAS  PubMed  Google Scholar 

  36. Terakura S, Yamamoto TN, Gardner RA, Turtle CJ, Jensen MC, Riddell SR . Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central memory T cells. Blood 2012; 119: 72–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Atanackovic D, Arfsten J, Cao Y, Gnjatic S, Schnieders F, Bartels K et al. Cancer-testis antigens are commonly expressed in multiple myeloma and induce systemic immunity following allogeneic stem cell transplantation. Blood 2007; 109: 1103–1112.

    Article  CAS  PubMed  Google Scholar 

  38. de Carvalho F, Vettore AL, Inaoka RJ, Karia B, Andrade VC, Gnjatic S et al. Evaluation of LAGE-1 and NY-ESO-1 expression in multiple myeloma patients to explore possible benefits of their homology for immunotherapy. Cancer Immun 2011; 11: 1.

    PubMed  PubMed Central  Google Scholar 

  39. Miyakawa Y, Ohnishi Y, Tomisawa M, Monnai M, Kohmura K, Ueyama Y et al. Establishment of a new model of human multiple myeloma using NOD/SCID/gamma(null)(c) (NOG) mice. Biochem Biophys Res Commun 2004; 313: 258–262.

    Article  CAS  PubMed  Google Scholar 

  40. Kirchgessner CU, Patil CK, Evans JW, Cuomo CA, Fried LM, Carter T et al. DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science 1995; 267: 1178–1183.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao Y, Wang QJ, Yang S, Kochenderfer JN, Zheng Z, Zhong X et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol 2009; 183: 5563–5574.

    Article  CAS  PubMed  Google Scholar 

  42. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011; 3: 95ra73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weijtens ME, Willemsen RA, van Krimpen BA, Bolhuis RL . Chimeric scFv/gamma receptor-mediated T-cell lysis of tumor cells is coregulated by adhesion and accessory molecules. Int J Cancer 1998; 77: 181–187.

    Article  CAS  PubMed  Google Scholar 

  44. Hombach A, Schneider C, Sent D, Koch D, Willemsen RA, Diehl V et al. An entirely humanized CD3 zeta-chain signaling receptor that directs peripheral blood t cells to specific lysis of carcinoembryonic antigen-positive tumor cells. Int J Cancer 2000; 88: 115–120.

    Article  CAS  PubMed  Google Scholar 

  45. Hombach A, Koch D, Sircar R, Heuser C, Diehl V, Kruis W et al. A chimeric receptor that selectively targets membrane-bound carcinoembryonic antigen (mCEA) in the presence of soluble CEA. Gene Therapy 1999; 6: 300–304.

    Article  CAS  PubMed  Google Scholar 

  46. Tinguely M, Jenni B, Reineke T, Korol D, Kofler A, Rousson V et al. Chromosomal translocations t(4;14), t(11;14) and proliferation rate stratify patients with mature plasma cell myelomas into groups with different survival probabilities: a molecular epidemiologic study on tissue microarrays. Am J Surg Pathol 2007; 31: 690–696.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank S Kleber, M Storz and M Glönkler for excellent technical assistance. Furthermore, we thank S Böttcher and R Müller (Department of Hematology, University Hospital Zurich, Switzerland) for support with flow cytometry. We thank P Romero (LICR, Lausanne, Switzerland) for the HLA-A*02:01-restricted NY-ESO-1157–165 (SLLMWITQC) peptide-specific, PE-conjugated tetramer. This study was funded by the ‘Dr Arnold U. und Susanne Huggenberger-Bischoff Stiftung zur Krebsforschung’ (UP); Cancer Research Institute; Ludwig Institute of Cancer Research; Krebsliga Zurich (all CR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Petrausch.

Ethics declarations

Competing interests

The authors declare no conflict of interest

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuberth, P., Jakka, G., Jensen, S. et al. Effector memory and central memory NY-ESO-1-specific re-directed T cells for treatment of multiple myeloma. Gene Ther 20, 386–395 (2013). https://doi.org/10.1038/gt.2012.48

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.48

Keywords

This article is cited by

Search

Quick links