Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

hIFN-α gene modification augments human natural killer cell line anti-human hepatocellular carcinoma function

Abstract

Natural killer (NK) cells are characterized by an efficient antitumor activity, and this activity has been exploited as the basis of cancer immunotherapy strategies. Interferon-α (IFN-α) is an important cytokine required for induction of the durable antitumor immune response and is an important stimulator of NK cells. In this study, to augment the efficiency of NK cell cytotoxicity to tumor cells, human IFN-α gene-modified natural killer cell line (NKL) (NKL-IFNα) cells, which could stably secrete IFN-α, were established. We investigated the natural cytotoxicity of NKL-IFNα cells against human hepatocarcinoma cells (HCCs) in vitro and in vivo. NKL-IFNα cells displayed a significantly stronger cytolytic activity against both human HCC cell lines and primary human hepatoma cancer cells compared with parental NKL cells. The increased cytolytic activity of NKL-IFNα cells was associated with the upregulation of cytotoxicity-related genes, such as perforin, granzyme B and Fas ligand, in the NK cells. Moreover, cytokines secreted by NKL-IFNα cells, such as tumor necrosis factor-α and IFN-γ, induced increased expression of Fas on the target HCC cells, and resulted in increased susceptibility of the HCC cells to NK-mediated cytolysis. Encouragingly, NKL-IFNα cells could significantly inhibit HCC tumor growth in a xenograft model and prolonged the survival of tumor-bearing nude mice. These results suggest that IFN-α gene-modified NKL cells could be suitable for the future development of cell-based immunotherapeutic strategies for hepatocellular carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Roder JC, Pross HF . The biology of the human natural killer cell. J Clin Immunol 1982; 24: 249–263.

    Article  Google Scholar 

  2. Miller J . The biology of natural killer cells in cancer, infection, and pregnancy. Exp Hematol 2001; 29: 1157–1168.

    Article  CAS  PubMed  Google Scholar 

  3. Farag SS, Caligiuri MA . Cytokine modulation of the innate immune system in the treatment of leukemia and lymphoma. Adv Pharmacol 2004; 51: 295–318.

    Article  CAS  PubMed  Google Scholar 

  4. Hallett WH, Murphy WJ . Natural killer cells: biology and clinical use in cancer therapy. Cell Mol Immunol 2004; 1: 12–21.

    CAS  PubMed  Google Scholar 

  5. Ishikawa E, Tsuboi K, Saijo K, Harada H, Takano S, Nose T et al. Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res 2004; 24: 1861–1871.

    PubMed  Google Scholar 

  6. Iliopoulou EG, Kountourakis P, Karamouzis MV, Doufexis D, Ardavanis A, Baxevanis CN et al. A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother 2010; 59: 1781–1789.

    Article  PubMed  Google Scholar 

  7. Tonn T, Becker S, Esser R, Schwabe D, Seifried E . Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92. J Hematother Stem Cell Res 2001; 10: 535–544.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng M, Zhang J, Jiang W, Chen Y, Tian Z . Natural killer cell lines in tumor immunotherapy. Front Med 2012; 6: 56–66.

    Article  PubMed  Google Scholar 

  9. Robertson MJ, Cochran KJ, Cameron C, Le JM, Tantravahi R, Ritz J . Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp Hematol 1996; 24: 406–415.

    CAS  PubMed  Google Scholar 

  10. Maasho K, Marusina A, Reynolds NM, Coligan JE, Borrego F . Efficient gene transfer into the human natural killer cell line, NKL, using the Amaxa nucleofection systemTM. J Immunol Methods 2004; 284: 133–140.

    Article  CAS  PubMed  Google Scholar 

  11. Smyth MJ, Hayakawa Y, Taked K, Yagita H . New aspects of natural-killercell surveillance and therapy of cancer. Nat Rev Cancer 2002; 2: 850–861.

    Article  CAS  PubMed  Google Scholar 

  12. Jiang W, Zhang J, Tian Z . Functional characterization of interleukin-15 gene transduction into the human natural killer cell line NKL. Cytotherapy 2008; 10: 265–274.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, Sun R, Wei H, Zhang JH, Tian ZG . Characterization of interleukin-15 gene-modified human natural killer cells: implications for adoptive cellular immunotherapy. Haematologica 2004; 89: 338–347.

    CAS  PubMed  Google Scholar 

  14. Ferrantini M, Capone I, Belardelli F . Interferon-α and cancer: mechanisms of action and new perspectives of clinical use. Biochimie 2007; 89: 884–893.

    Article  CAS  PubMed  Google Scholar 

  15. Belardelli F, Gresser I . The neglected role of type I interferon in the T-cell response: implications for its clinical use. Immunology 1996; 17: 369–372.

    CAS  Google Scholar 

  16. Gutterman JU . Cytokine therapeutics: lessons from interferon-alpha. Proc Natl Acad Sci USA 1994; 91: 1198–1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moschella F, Bisikirska B, Maffei A, Papadopoulos KP, Skerrett D, Liu Z et al. Gene expression profiling and functional activity of human dendritic cells induced with IFN-α-2b: implications for cancer immunotherapy. Clin Cancer Res 2003; 9: 2022–2031.

    CAS  PubMed  Google Scholar 

  18. Cangemi G, Morandi B, D’Agostino A, Peri C, Conte R, Damonte G et al. IFN-alpha mediates the up-regulation of HLA class I on melanoma cells without switching proteasome to immunoproteasome. Int Immunol 2003; 15: 1415–2.

    Article  CAS  PubMed  Google Scholar 

  19. Viard-Leveugle I, Gaide O, Jankovic D, Feldmeyer L, Kerl K, Pickard C et al. TNF-α and IFN-γ are potential inducers of fas-mediated keratinocyte apoptosis through activation of inducible nitric oxide synthase in toxic epidermal necrolysis. J Invest Dermatol 2013; 133: 489–498.

    Article  CAS  PubMed  Google Scholar 

  20. Moretta L, Ferlazzo G, Bottino C, Vitale M, Pende D, Mingari MC et al. Effector and regulatory events during natural killer–dendritic cell interactions. Immunol Rev 2006; 214: 219–228.

    Article  CAS  PubMed  Google Scholar 

  21. Ljunggren HG, Malmberg KJ . Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 2007; 7: 329–339.

    Article  CAS  PubMed  Google Scholar 

  22. Chan JK, Hamilton CA, Cheung MK, Karimi M, Baker J, Gall JM et al. Enhanced killing of primary ovarian cancer by retargeting autologous cytokine-induced killer cells with bispecific antibodies: a preclinical study. Clin Cancer Res 2006; 12: 1859–1867.

    Article  CAS  PubMed  Google Scholar 

  23. Nagashima S, Mailliard R, Kashii Y, Reichert TE, Herberman RB, Robbins P et al. Stable transduction of the interleukin-2 gene into human natural killer cell lines and their phenotypic and functional characterization in vitro and in vivo. Blood 1998; 91: 3850–3861.

    CAS  PubMed  Google Scholar 

  24. Zhang J, Sun R, Wei H, Zhang J, Tian Z . Characterization of stem cell factor gene-modified human natural killer cell line, NK-92 cells: implication in NK cell-based adoptive cellular immunother-apy. Oncol Rep 2004; 11: 1097–1106.

    CAS  PubMed  Google Scholar 

  25. Kamath AT, Sheasby CE, Tough DF . Dendritic cells and NK cells stimulate bystander T cell activation in response to TLR agonists through secretion of IFN-αβ and IFN-γ. J Immunol 2005; 174: 767–776.

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen KB, Salazar-Mather TP, Dalod MY, Van Deusen JB, Wei XQ, Liew FY et al. Coordinated and distinct roles for IFN-α, IL-12, and IL-15 regulation of NK cell responses to viral infection. J Immunol 2002; 169: 4279–4287.

    Article  CAS  PubMed  Google Scholar 

  27. Paquette RL, Hsu NC, Kiertscher SM, Park AN, Tran L, Roth MD et al. Interferon-alpha and granulocyte–macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells. J Leukocyte Biol 1998; 64: 358–367.

    Article  CAS  PubMed  Google Scholar 

  28. Luft T, Pang KC, Thomas E, Hertzog P, Hart DN, Trapani J et al. Type I IFNs enhance the terminal differentiation of dendritic cells. J Immunol 1998; 161: 1947–1953.

    CAS  PubMed  Google Scholar 

  29. Santodonato L, D’Agostino G, Nisini R, Mariotti S, Monque DM, Spada M et al. Monocyte-derived dendritic cells generated after a shortterm culture with IFN-a and granulocyte–macrophage colony-stimulating factor stimulate a potent Epstein–Barr virus-specific CD8t T-cell response. J Immunol 2003; 170: 5195–5202.

    Article  CAS  PubMed  Google Scholar 

  30. Tosi D, Valenti R, Cova A, Sovena G, Huber V, Pilla L et al. Role of cross-talk between IFN-a-induced monocyte-derived dendritic cells and NK cells in priming CD8t T-cell responses against human tumor antigens. J Immunol 2004; 172: 5363–5370.

    Article  CAS  PubMed  Google Scholar 

  31. Xie Q, Shen HC, Jia NN, Wang H, Lin LY, An BY et al. Patients with chronic hepatitis B infection display deficiency of plasmacytoid dendritic cells with reduced expression of TLR9 microbes. J Infect 2009; 11: 515–523.

    CAS  Google Scholar 

  32. Sun C, Fu B, Gao Y, Liao X, Sun R, Tian Z et al. TGF-β1 down-regulation of NKG2D/DAP10 and 2B4/SAP expression on human NK cells contributes to HBV persistence. PLoS Pathogen 2012; 8: e1002594.

    Article  CAS  Google Scholar 

  33. Robertson MJ, Ritz J . Biology and clinical relevance of human natural killer cells. Blood 1990; 76: 2421–2438.

    CAS  PubMed  Google Scholar 

  34. Moretta A, Bottino C, Vitale M, Pende D, Biassoni R, Mingari MC et al. Receptors for HLA class-I molecules in human natural killer cells. Annu Rev Immunol 1996; 14: 619–648.

    Article  CAS  PubMed  Google Scholar 

  35. Soloski MJ . Recognition of tumor cells by the innate immune system. Curr Opin Immunol 2001; 132: 154–162.

    Article  Google Scholar 

  36. Riccioli A, Starace D, D’Alessio A, Starace G, Padula F, De Cesaris P et al. TNF-alpha and IFN-gamma regulate expression and function of the Fas system in the seminiferous epithelium. J Immunol 2000; 165: 743–749.

    Article  CAS  PubMed  Google Scholar 

  37. Spanaus KS, Schlapbach R, Fontana A . TNF-alpha and IFN-gamma render microglia sensitive to Fas ligand-induced apoptosis by induction of Fas expression and down-regulation of Bcl-2 and Bcl-xL. Eur J Immunol 1998; 28: 4398–4408.

    Article  CAS  PubMed  Google Scholar 

  38. Li Z, Tuteja G, Schug J, Kaestner KH . Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell 2012; 148: 72–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sells MA, Chen ML, Acs G . Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proc Natl Acad Sci USA 1987; 84: 1005–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grund EM, Muise-Helmericks RC . Cost efficient and effective gene transfer into the human natural killer cell line, NK92. J Immunol Methods 2005; 296: 31–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81102209, 30972962) and the Ministry of Science and Technology of China (2012AA020901; 2012ZX10002-014; 2006CB504303; 2007AA021109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, W., Zhang, C., Tian, Z. et al. hIFN-α gene modification augments human natural killer cell line anti-human hepatocellular carcinoma function. Gene Ther 20, 1062–1069 (2013). https://doi.org/10.1038/gt.2013.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.31

Keywords

This article is cited by

Search

Quick links