Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Coexpression of human perforin improves yeast-mediated delivery of DNA and mRNA to mammalian antigen-presenting cells

Abstract

Previous studies underlined the capacity of recombinant yeast as efficient vehicle for the targeted delivery of functional nucleic acids as well as proteinaceous antigens to mammalian antigen-presenting cells (APCs). To improve this yeast-mediated cargo transport into APCs, we investigated the impact of coexpression of the human membrane-perturbing protein perforin in comparison with bacterial listeriolysin O (LLO) on the yeast-based delivery of DNA, mRNA and proteins to mammalian APCs. In contrast to LLO, a cholesterol-dependent pore-forming toxin of Listeria, intracellular expression of human perforin in Saccharomyces cerevisiae had no impact on yeast cell viability, while its coexpression significantly increased translocation of ovalbumin and subsequent activation of ovalbumin-specific T lymphocytes. Likewise, perforin improved the expression of the model antigen enhanced green fluorescent protein after yeast-mediated DNA and mRNA delivery, whereas LLO was only able to enhance DNA delivery. Taken together, our data show that human perforin, besides bacterial hemolysins, represents a promising means to improve the yeast-mediated delivery of functional nucleic acids and proteins to mammalian APCs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Stubbs AC, Martin KS, Coeshott C, Skaates SV, Kuritzkes DR, Bellgrau D et al. Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nat Med 2001; 7: 625–629.

    Article  CAS  PubMed  Google Scholar 

  2. Breinig F, Heintel T, Schumacher A, Meyerhans A, Schmitt MJ . Specific activation of CMV-primed human T lymphocytes by cytomegalovirus pp65 expressed in fission yeast. FEMS Immunol Med Microbiol 2003; 38: 231–239.

    Article  CAS  PubMed  Google Scholar 

  3. Wansley EK, Chakraborty M, Hance KW, Bernstein MB, Boehm AL, Guo Z et al. Vaccination with a recombinant Saccharomyces cerevisiae expressing a tumor antigen breaks immune tolerance and elicits therapeutic antitumor responses. Clin Cancer Res 2008; 14: 4316–4325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Riemann H, Takao J, Shellman YG, Hines WA, Edwards CK 3rd, Franzusoff A et al. Generation of a prophylactic melanoma vaccine using whole recombinant yeast expressing MART-1. Exp Dermatol 2007; 16: 814–822.

    Article  CAS  PubMed  Google Scholar 

  5. Bazan SB, Geginat G, Breinig T, Schmitt MJ, Breinig F . Uptake of various yeast genera by antigen-presenting cells and influence of subcellular antigen localization on the activation of ovalbumin-specific CD8 T lymphocytes. Vaccine 29: 8165–8173.

  6. Bazan SB, Breinig T, Schmitt MJ, Breinig F . Heat treatment improves antigen-specific T cell activation after protein delivery by several but not all yeast genera. Vaccine 32: 2591–2598.

  7. Walch B, Breinig T, Schmitt MJ, Breinig F . Delivery of functional DNA and messenger RNA to mammalian phagocytic cells by recombinant yeast. Gene Ther 19: 237–245.

  8. Walch-Rückheim B, Schmitt MJ, Breinig F . Schizosaccharomyces pombe: a novel transport vehicle of functional DNA and mRNA into mammalian antigen-presenting cells. Vaccine 32: 6029–6033.

  9. Kiflmariam MG, Yang H, Zhang Z . Gene delivery to dendritic cells by orally administered recombinant Saccharomyces cerevisiae in mice. Vaccine 31: 1360–1363.

  10. Hess J, Miko D, Catic A, Lehmensiek V, Russell DG, Kaufmann SH . Mycobacterium bovis Bacille Calmette-Guerin strains secreting listeriolysin of Listeria monocytogenes. Proc Natl Acad Sci USA 1998; 95: 5299–5304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Walch B, Breinig T, Geginat G, Schmitt MJ, Breinig F . Yeast-based protein delivery to mammalian phagocytic cells is increased by coexpression of bacterial listeriolysin. Microbes Infect 13: 908–913.

  12. Berke G . The CTL’s kiss of death. Cell 1995; 81: 9–12.

    Article  CAS  PubMed  Google Scholar 

  13. Voskoboinik I, Thia MC, Fletcher J, Ciccone A, Browne K, Smyth MJ et al. Calcium-dependent plasma membrane binding and cell lysis by perforin are mediated through its C2 domain: a critical role for aspartate residues 429, 435, 483, and 485 but not 491. J Biol Chem 2005; 280: 8426–8434.

    Article  CAS  PubMed  Google Scholar 

  14. Albert ML, Sauter B, Bhardwaj N . Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392: 86–89.

    Article  CAS  PubMed  Google Scholar 

  15. Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL et al. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 1998; 188: 1359–1368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lorenz MC, Fink GR . The glyoxylate cycle is required for fungal virulence. Nature 2001; 412: 83–86.

    Article  CAS  PubMed  Google Scholar 

  17. Lorenz MC, Bender JA, Fink GR . Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 2004; 3: 1076–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blumenthal R, Millard PJ, Henkart MP, Reynolds CW, Henkart PA . Liposomes as targets for granule cytolysin from cytotoxic large granular lymphocyte tumors. Proc Natl Acad Sci USA 1984; 81: 5551–5555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lowin B, Peitsch MC, Tschopp J . Perforin and granzymes: crucial effector molecules in cytolytic T lymphocyte and natural killer cell-mediated cytotoxicity. Curr Top Microbiol Immunol 1995; 198: 1–24.

    CAS  PubMed  Google Scholar 

  20. Liu CC, Walsh CM, Young JD . Perforin: structure and function. Immunol Today 1995; 16: 194–201.

    Article  PubMed  Google Scholar 

  21. Tschopp J, Masson D, Stanley KK . Structural/functional similarity between proteins involved in complement- and cytotoxic T-lymphocyte-mediated cytolysis. Nature 1986; 322: 831–834.

    Article  CAS  PubMed  Google Scholar 

  22. Froelich CJ, Orth K, Turbov J, Seth P, Gottlieb R, Babior B et al. New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J Biol Chem 1996; 271: 29073–29079.

    Article  CAS  PubMed  Google Scholar 

  23. Metkar SS, Wang B, Aguilar-Santelises M, Raja SM, Uhlin-Hansen L, Podack E et al. Cytotoxic cell granule-mediated apoptosis: perforin delivers granzyme B-serglycin complexes into target cells without plasma membrane pore formation. Immunity 2002; 16: 417–428.

    Article  CAS  PubMed  Google Scholar 

  24. Pipkin ME, Lieberman J . Delivering the kiss of death: progress on understanding how perforin works. Curr Opin Immunol 2007; 19: 301–308.

    Article  CAS  PubMed  Google Scholar 

  25. Li F, Zhou X, Qin W, Wu J . Full-length cloning and 3'-terminal portion expression of human perforin cDNA. Clin Chim Acta 2001; 313: 125–131.

    Article  CAS  PubMed  Google Scholar 

  26. Hill JE, Myers AM, Koerner TJ, Tzagoloff A . Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 1986; 2: 163–167.

    Article  CAS  PubMed  Google Scholar 

  27. Ito H, Fukuda Y, Murata K, Kimura A . Transformation of intact yeast cells treated with alkali cations. J Bacteriol 1983; 153: 163–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Skoberne M, Schenk S, Hof H, Geginat G . Cross-presentation of Listeria monocytogenes-derived CD4 T cell epitopes. J Immunol 2002; 169: 1410–1418.

    Article  CAS  PubMed  Google Scholar 

  29. Schoen C, Kolb-Maurer A, Geginat G, Loffler D, Bergmann B, Stritzker J et al. Bacterial delivery of functional messenger RNA to mammalian cells. Cell Microbiol 2005; 7: 709–724.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Birgit Glombitza, Tanja Tänzer, Rowitha Schepp and Simone Schenk for excellent technical assistance. This work was supported by a grant from Saarland Staatskanzlei (LFFP 1303) to FB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Breinig.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walch-Rückheim, B., Kiefer, R., Geginat, G. et al. Coexpression of human perforin improves yeast-mediated delivery of DNA and mRNA to mammalian antigen-presenting cells. Gene Ther 23, 103–107 (2016). https://doi.org/10.1038/gt.2015.77

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.77

This article is cited by

Search

Quick links