Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The influence of leptin on the dopamine system and implications for ingestive behavior

Abstract

Food intake is regulated by many factors, including sensory information, metabolic hormones and the state of hunger. In modern humans, the drive to eat has proven to be incompatible with the excess food supply present in industrialized societies. A result of this imbalance is the dramatically increased rates of obesity during the last 20 years. The rise in obesity rates poses one of the most significant public health issues facing the United States and yet we do not understand the neural basis of ingestive behavior, and specifically, our motivation to eat. Understanding how the brain controls eating will lay the foundation for systematic dissection, understanding and treatment of obesity and related disorders. The lack of control over food intake bears resemblance to drug addiction, where loss of control over behavior leads to compulsive drug use. Work in laboratory animals has long suggested that there exist common neural substrates underlying both food and drug intake behaviors. Recent studies have shown direct leptin effects on dopamine neuron function and behavior. This provides a new mechanism by which peripheral hormones influence behavior and contribute to a more comprehensive model of neural control over food intake.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 2003; 289: 76–79.

    Article  PubMed  Google Scholar 

  2. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM . Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.

    Article  CAS  PubMed  Google Scholar 

  3. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995; 83: 1263–1271.

    Article  CAS  PubMed  Google Scholar 

  4. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996; 84: 491–495.

    Article  CAS  PubMed  Google Scholar 

  5. Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG . Central nervous system control of food intake. Nature 2000; 404: 661–671.

    Article  CAS  PubMed  Google Scholar 

  6. Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001; 411: 480–484.

    Article  CAS  PubMed  Google Scholar 

  7. Jentsch JD, Roth RH, Taylor JR . Role for dopamine in the behavioral functions of the prefrontal corticostriatal system: implications for mental disorders and psychotropic drug action. Prog Brain Res 2000; 126: 433–453.

    Article  CAS  PubMed  Google Scholar 

  8. Kelley AE, Baldo BA, Pratt WE, Will MJ . Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 2005; 86: 773–795.

    Article  CAS  PubMed  Google Scholar 

  9. Rolls ET . The orbitofrontal cortex and reward. Cereb Cortex 2000; 10: 284–294.

    Article  CAS  PubMed  Google Scholar 

  10. Fulton S, Woodside B, Shizgal P . Modulation of brain reward circuitry by leptin. Science 2000; 287: 125–128.

    Article  CAS  PubMed  Google Scholar 

  11. Carr KD . Augmentation of drug reward by chronic food restriction: behavioral evidence and underlying mechanisms. Physiol Behav 2002; 76: 353–364.

    Article  CAS  PubMed  Google Scholar 

  12. Shalev U, Yap J, Shaham Y . Leptin attenuates acute food deprivation-induced relapse to heroin seeking. J Neurosci 2001; 21: RC129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Figlewicz DP, Bennett J, Evans SB, Kaiyala K, Sipols AJ, Benoit SC . Intraventricular insulin and leptin reverse place preference conditioned with high-fat diet in rats. Behav Neurosci 2004; 118: 479–487.

    Article  CAS  PubMed  Google Scholar 

  14. Figlewicz DP, Higgins MS, Ng-Evans SB, Havel PJ . Leptin reverses sucrose-conditioned place preference in food-restricted rats. Physiol behav 2001; 73: 229–234.

    Article  CAS  PubMed  Google Scholar 

  15. Figlewicz DP, Woods SC . Adiposity signals and brain reward mechanisms. Trends Pharmacol Sci 2000; 21: 235–236.

    Article  CAS  PubMed  Google Scholar 

  16. Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB . Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 1998; 395: 535–547.

    Article  CAS  PubMed  Google Scholar 

  17. Grill HJ, Schwartz MW, Kaplan JM, Foxhall JS, Breininger J, Baskin DG . Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 2002; 143: 239–246.

    Article  CAS  PubMed  Google Scholar 

  18. Figlewicz DP, Evans SB, Murphy J, Hoen M, Baskin DG . Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 2003; 964: 107–115.

    Article  CAS  PubMed  Google Scholar 

  19. Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 2006; 51: 801–810.

    Article  CAS  PubMed  Google Scholar 

  20. Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 2006; 51: 811–822.

    Article  CAS  PubMed  Google Scholar 

  21. Bouret SG, Draper SJ, Simerly RB . Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 2004; 304: 108–110.

    Article  CAS  PubMed  Google Scholar 

  22. Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 2004; 304: 110–115.

    Article  CAS  PubMed  Google Scholar 

  23. Krugel U, Schraft T, Kittner H, Kiess W, Illes P . Basal and feeding-evoked dopamine release in the rat nucleus accumbens is depressed by leptin. Eur J Pharmacol 2003; 482: 185–187.

    Article  PubMed  Google Scholar 

  24. Farooqi IS, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher PC . Leptin regulates striatal regions and human eating behavior. Science 2007; 317: 1355.

    Article  CAS  PubMed  Google Scholar 

  25. Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 2006; 116: 3229–3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kalivas PW, Volkow ND . The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 2005; 162: 1403–1413.

    Article  PubMed  Google Scholar 

  27. Lammel S, Hetzel A, Hackel O, Jones I, Liss B, Roeper J . Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 2008; 57: 760–773.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou QY, Palmiter RD . Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 1995; 83: 1197–1209.

    Article  CAS  PubMed  Google Scholar 

  29. Cannon CM, Palmiter RD . Reward without dopamine. J Neurosci 2003; 23: 10827–10831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baldo BA, Sadeghian K, Basso AM, Kelley AE . Effects of selective dopamine D1 or D2 receptor blockade within nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav Brain Res 2002; 137: 165–177.

    Article  CAS  PubMed  Google Scholar 

  31. Szczypka MS, Kwok K, Brot MD, Marck BT, Matsumoto AM, Donahue BA et al. Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron 2001; 30: 819–828.

    Article  CAS  PubMed  Google Scholar 

  32. Hnasko TS, Perez FA, Scouras AD, Stoll EA, Gale SD, Luquet S et al. Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia. Proc Natl Acad Sci USA 2006; 103: 8858–8863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aberman JE, Ward SJ, Salamone JD . Effects of dopamine antagonists and accumbens dopamine depletions on time-constrained progressive-ratio performance. Pharmacol Biochem Behav 1998; 61: 341–348.

    Article  CAS  PubMed  Google Scholar 

  34. Nowend KL, Arizzi M, Carlson BB, Salamone JD . D1 or D2 antagonism in nucleus accumbens core or dorsomedial shell suppresses lever pressing for food but leads to compensatory increases in chow consumption. Pharmacol Biochem Behav 2001; 69: 373–382.

    Article  CAS  PubMed  Google Scholar 

  35. Salamone JD, Correa M, Mingote S, Weber SM . Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J Pharmacol Exp Ther 2003; 305: 1–8.

    Article  CAS  PubMed  Google Scholar 

  36. Wyvell CL, Berridge KC . Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward ‘wanting’ without enhanced ‘liking’ or response reinforcement. J Neurosci 2000; 20: 8122–8130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nicola SM, Taha SA, Kim SW, Fields HL . Nucleus accumbens dopamine release is necessary and sufficient to promote the behavioral response to reward-predictive cues. Neuroscience 2005; 135: 1025–1033.

    Article  CAS  PubMed  Google Scholar 

  38. Salamone JD, Correa M, Mingote SM, Weber SM . Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr Opin Pharmacol 2005; 5: 34–41.

    Article  CAS  PubMed  Google Scholar 

  39. Wise RA . Dopamine, learning and motivation. Nat Rev Neurosci 2004; 5: 483–494.

    Article  CAS  PubMed  Google Scholar 

  40. Wise RA . Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1149–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roitman MF, Stuber GD, Phillips PE, Wightman RM, Carelli RM . Dopamine operates as a subsecond modulator of food seeking. J Neurosci 2004; 24: 1265–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nestler EJ . Is there a common molecular pathway for addiction? Nat Neurosci 2005; 8: 1445–1449.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang M, Gosnell BA, Kelley AE . Intake of high-fat food is selectively enhanced by mu opioid receptor stimulation within the nucleus accumbens. J Pharmacol Exp Ther 1998; 285: 908–914.

    CAS  PubMed  Google Scholar 

  44. Stratford TR, Kelley AE, Simansky KJ . Blockade of GABAA receptors in the medial ventral pallidum elicits feeding in satiated rats. Brain Res 1999; 825: 199–203.

    Article  CAS  PubMed  Google Scholar 

  45. Kelley AE, Swanson CJ . Feeding induced by blockade of AMPA and kainate receptors within the ventral striatum: a microinfusion mapping study. Behav Brain Res 1997; 89: 107–113.

    Article  CAS  PubMed  Google Scholar 

  46. Pecina S, Cagniard B, Berridge KC, Aldridge JW, Zhuang X . Hyperdopaminergic mutant mice have higher ‘wanting’ but not ‘liking’ for sweet rewards. J Neurosci 2003; 23: 9395–9402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Robinson TE, Berridge KC . Incentive-sensitization and addiction. Addiction 2001; 96: 103–114.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang M, Balmadrid C, Kelley AE . Nucleus accumbens opioid, GABaergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat. Behav Neurosci 2003; 117: 202–211.

    Article  CAS  PubMed  Google Scholar 

  49. Pecina S, Berridge KC . Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J Neurosci 2005; 25: 11777–11786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Taha SA, Fields HL . Encoding of palatability and appetitive behaviors by distinct neuronal populations in the nucleus accumbens. J Neurosci 2005; 25: 1193–1202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Taha SA, Fields HL . Inhibitions of nucleus accumbens neurons encode a gating signal for reward-directed behavior. J Neurosci 2006; 26: 217–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Clegg DJ, Air EL, Woods SC, Seeley RJ . Eating elicited by orexin-a, but not melanin-concentrating hormone, is opioid mediated. Endocrinology 2002; 143: 2995–3000.

    Article  CAS  PubMed  Google Scholar 

  53. Figlewicz DP, Szot P, Chavez M, Woods SC, Veith RC . Intraventricular insulin increases dopamine transporter mRNA in rat VTA/substantia nigra. Brain Res 1994; 644: 331–334.

    Article  CAS  PubMed  Google Scholar 

  54. Naleid AM, Grace MK, Cummings DE, Levine AS . Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides 2005; 26: 2274–2279.

    Article  CAS  PubMed  Google Scholar 

  55. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W et al. Brain dopamine and obesity. Lancet 2001; 357: 354–357.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R J DiLeone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiLeone, R. The influence of leptin on the dopamine system and implications for ingestive behavior. Int J Obes 33 (Suppl 2), S25–S29 (2009). https://doi.org/10.1038/ijo.2009.68

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.68

Keywords

This article is cited by

Search

Quick links