Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epigenetic changes in early life and future risk of obesity

Abstract

The rapid increase in incidence of obesity over the past two decades cannot be explained solely by genetic and adult lifestyle factors. There is now considerable evidence that the fetal and early postnatal environments also strongly influence the risk of developing obesity in later life. Initially, human studies showed that low birth weight was associated with an increased risk of obesity but increasingly there is evidence that overnutrition in the early life can also increase susceptibility to future obesity. These findings have now been replicated in animal models, which have shown that both maternal under- and overnutrition can induce persistent changes in gene expression and metabolism. The mechanism by which the maternal nutritional environment induces such changes is beginning to be understood and involves the altered epigenetic regulation of specific genes. In this review, we discuss the recent evidence that shows that early-life environment can induce altered epigenetic regulation leading to the induction of an altered phenotype. The demonstration of a role for altered epigenetic regulation of genes in the developmental induction of obesity opens the possibility that interventions, either through nutrition or specific drugs, may modify long-term obesity risk and combat this rapid rise in obesity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. WHO. Obesity. Preventing and Managing the Global Epidemic. WHO: Geneva, 1998.

  2. Stockard CR . Developmental rate and structural expression: an experimental study of twins, double monsters and single deformities, and the interaction among embryonic organs during their origin and development. Am J Anat 1921; 28: 115–277.

    Google Scholar 

  3. Lee TM, Zucker I . Vole infant development is influenced perinatally by maternal photoperiodic history. Am J Physiol 1988; 255: R831–R838.

    CAS  PubMed  Google Scholar 

  4. Pener MP, Yerushalmi Y . The physiology of locust phase polymorphism: an update. J Insect Physiol 1998; 44: 365–377.

    CAS  PubMed  Google Scholar 

  5. Laforsch C, Tollrian R . Embryological aspects of inducible morphological defenses in Daphnia. J Morphol 2004; 262: 701–707.

    PubMed  Google Scholar 

  6. Brent RL . Environmental causes of human congenital malformations: the pediatrician's role in dealing with these complex clinical problems caused by a multiplicity of environmental and genetic factors. Pediatrics 2004; 113: 957–968.

    PubMed  Google Scholar 

  7. Delaval K, Wagschal A, Feil R . Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. Bioessays 2006; 28: 453–459.

    CAS  PubMed  Google Scholar 

  8. Barker DJ, Osmond C . Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986; 1: 1077–1081.

    CAS  PubMed  Google Scholar 

  9. Gluckman PD, Hanson MA, Cooper C, Thornburg KL . Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 2008; 359: 61–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Godfrey KM, Barker DJ . Fetal programming and adult health. Public Health Nutr 2001; 4: 611–624.

    CAS  PubMed  Google Scholar 

  11. McCance DR, Pettitt DJ, Hanson RL, Jacobsson LT, Knowler WC, Bennett PH . Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype? BMJ 1994; 308: 942–945.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Curhan GC, Willett WC, Rimm EB, Spiegelman D, Ascherio AL, Stampfer MJ . Birth weight and adult hypertension, diabetes mellitus, and obesity in US men. Circulation 1996; 94: 3246–3250.

    CAS  PubMed  Google Scholar 

  13. Hanson MA, Gluckman PD . Developmental processes and the induction of cardiovascular function: conceptual aspects. J Physiol 2005; 565: 27–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Painter RC, Roseboom TJ, Bleker OP . Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol 2005; 20: 345–352.

    CAS  PubMed  Google Scholar 

  15. Cleal JK, Poore KR, Newman JP, Noakes DE, Hanson MA, Green LR . The effect of maternal undernutrition in early gestation on gestation length and fetal and postnatal growth in sheep. Pediatr Res 2007; 62: 422–427.

    PubMed  Google Scholar 

  16. Poissonnet CM, LaVelle M, Burdi AR . Growth and development of adipose tissue. J Pediatr 1988; 113: 1–9.

    CAS  PubMed  Google Scholar 

  17. Catalano PM, Kirwan JP . Maternal factors that determine neonatal size and body fat. Curr Diab Rep 2001; 1: 71–77.

    CAS  PubMed  Google Scholar 

  18. Rolland-Cachera MF, Deheeger M, Bellisle F, Sempe M, Guilloud-Bataille M, Patois E . Adiposity rebound in children: a simple indicator for predicting obesity. Am J Clin Nutr 1984; 39: 129–135.

    Article  CAS  PubMed  Google Scholar 

  19. Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB . Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ 2000; 320: 967–971.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ong KK . Size at birth, postnatal growth and risk of obesity. Horm Res 2006; 65: 65–69.

    CAS  PubMed  Google Scholar 

  21. Singhal A, Cole TJ, Fewtrell M, Lucas A . Breastmilk feeding and lipoprotein profile in adolescents born preterm: follow-up of a prospective randomised study. Lancet 2004; 363: 1571–1578.

    CAS  PubMed  Google Scholar 

  22. Singhal A . Early nutrition and long-term cardiovascular health. Nutr Rev 2006; 64: S44–S49.

    PubMed  Google Scholar 

  23. Harder T, Bergmann R, Kallischnigg G, Plagemann A . Duration of breastfeeding and risk of overweight: a meta-analysis. Am J Epidemiol 2005; 162: 397–403.

    PubMed  Google Scholar 

  24. Owen CG, Martin RM, Whincup PH, Smith GD, Cook DG . Effect of infant feeding on the risk of obesity across the life course: a quantitative review of published evidence. Pediatrics 2005; 115: 1367–1377.

    PubMed  Google Scholar 

  25. Owen CG, Martin RM, Whincup PH, vey-Smith G, Gillman MW, Cook DG . The effect of breastfeeding on mean body mass index throughout life: a quantitative review of published and unpublished observational evidence. Am J Clin Nutr 2005; 82: 1298–1307.

    CAS  PubMed  Google Scholar 

  26. Gluckman PD, Hanson MA . Evolution, development and timing of puberty. Trends Endocrinol Metab 2006; 17: 7–12.

    CAS  PubMed  Google Scholar 

  27. Dorner G, Plagemann A . Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm Metab Res 1994; 26: 213–221.

    CAS  PubMed  Google Scholar 

  28. Oken E, Taveras EM, Kleinman KP, Rich-Edwards JW, Gillman MW . Gestational weight gain and child adiposity at age 3 years. Am J Obstet Gynecol 2007; 196: 322–328.

    PubMed  PubMed Central  Google Scholar 

  29. Villamor E, Cnattingius S . Interpregnancy weight change and risk of adverse pregnancy outcomes: a population-based study. Lancet 2006; 368: 1164–1170.

    PubMed  Google Scholar 

  30. Kral JG, Biron S, Simard S, Hould FS, Lebel S, Marceau S et al. Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2–18 years. Pediatrics 2006; 118: 1644–1649.

    Google Scholar 

  31. Hillier TA, Pedula KL, Schmidt MM, Mullen JA, Charles MA, Pettitt DJ . Childhood obesity and metabolic imprinting: the ongoing effects of maternal hyperglycemia. Diabetes Care 2007; 30: 2287–2292.

    PubMed  Google Scholar 

  32. Silverman BL, Rizzo TA, Cho NH, Metzger BE . Long-term effects of the intrauterine environment. The Northwestern University Diabetes in Pregnancy Center. Diabetes Care 1998; 21: B142–B149.

    PubMed  Google Scholar 

  33. Boney CM, Verma A, Tucker R, Vohr BR . Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 2005; 115: 290–296.

    Google Scholar 

  34. Langley-Evans SC, Phillips GJ, Jackson AA . In utero exposure to maternal low protein diets induces hypertension in weanling rats, independently of maternal blood pressure changes. Clin Nutr 1994; 13: 319–324.

    CAS  PubMed  Google Scholar 

  35. Lucas A, Baker BA, Desai M, Hales CN . Nutrition in pregnant or lactating rats programs lipid metabolism in the offspring. Br J Nutr 1996; 76: 605–612.

    CAS  PubMed  Google Scholar 

  36. Bellinger L, Lilley C, Langley-Evans SC . Prenatal exposure to a maternal low-protein diet programmes a preference for high-fat foods in the young adult rat. Br J Nutr 2004; 92: 513–520.

    CAS  PubMed  Google Scholar 

  37. Bellinger L, Sculley DV, Langley-Evans SC . Exposure to undernutrition in fetal life determines fat distribution, locomotor activity and food intake in ageing rats. Int J Obes (Lond) 2006; 30: 729–738.

    CAS  Google Scholar 

  38. Burdge GC, Slater-Jefferies JL, Grant RA, Chung WS, West AL, Lillycrop KA et al. Sex, but not maternal protein or folic acid intake, determines the fatty acid composition of hepatic phospholipids, but not of triacylglycerol, in adult rats. Prostaglandins Leukot Essent Fatty Acids 2008; 78: 73–79.

    CAS  PubMed  Google Scholar 

  39. Torrens C, Brawley L, Anthony FW, Dance CS, Dunn R, Jackson AA et al. Folate supplementation during pregnancy improves offspring cardiovascular dysfunction induced by protein restriction. Hypertension 2006; 47: 982–987.

    CAS  PubMed  Google Scholar 

  40. Calder PC, Yaqoob P . The level of protein and type of fat in the diet of pregnant rats both affect lymphocyte function in the offspring. Nutr Res 2000; 20: 995–1005.

    CAS  Google Scholar 

  41. Langley-Evans SC, Sculley DV . Programming of hepatic antioxidant capacity and oxidative injury in the ageing rat. Mech Ageing Dev 2005; 126: 804–812.

    CAS  PubMed  Google Scholar 

  42. Burdge GC, Lillycrop KA, Jackson AA, Gluckman PD, Hanson MA . The nature of the growth pattern and of the metabolic response to fasting in the rat are dependent upon the dietary protein and folic acid intakes of their pregnant dams and post-weaning fat consumption. Br J Nutr 2008; 99: 540–549.

    CAS  PubMed  Google Scholar 

  43. Burdge GC, Hanson MA, Slater-Jefferies JL, Lillycrop KA . Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br J Nutr 2007; 97: 1036–1046.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bertram C, Trowern AR, Copin N, Jackson AA, Whorwood CB . The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11beta-hydroxysteroid dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology 2001; 142: 2841–2853.

    CAS  PubMed  Google Scholar 

  45. Burns SP, Desai M, Cohen RD, Hales CN, Iles RA, Germain JP et al. Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation. J Clin Invest 1997; 100: 1768–1774.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Maloney CA, Gosby AK, Phuyal JL, Denyer GS, Bryson JM, Caterson ID . Site-specific changes in the expression of fat-partitioning genes in weanling rats exposed to a low-protein diet in utero. Obes Res 2003; 11: 461–468.

    CAS  PubMed  Google Scholar 

  47. Burdge GC, Delange E, Dubois L, Dunn RL, Hanson MA, Jackson AA et al. Effect of reduced maternal protein intake in pregnancy in the rat on the fatty acid composition of brain, liver, plasma, heart and lung phospholipids of the offspring after weaning. Br J Nutr 2003; 90: 345–352.

    CAS  PubMed  Google Scholar 

  48. Burdge GC, Phillips ES, Dunn RL, Jackson AA, Lillycrop KA . Effect of reduced maternal protein consumption during pregnancy in the rat on plasma lipid concentrations and expression of peroxisomal proliferator–activated receptors in the liver and adipose tissue of the offspring. Nutr Res 2004; 24: 639–646.

    CAS  Google Scholar 

  49. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC . Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 2005; 135: 1382–1386.

    CAS  PubMed  Google Scholar 

  50. Burdge GC, Phillips ES, Dunn RL, Jackson AA, Lillycrop KA . Effect of reduced maternal protein consumption during pregnancy in the rat on plasma lipid concentrations and expression of peroxisomal proliferator–activated receptors in the liver and adipose tissue of the offspring. Nutr Res 2004; 24: 639–646.

    CAS  Google Scholar 

  51. Woodall SM, Johnston BM, Breier BH, Gluckman PD . Chronic maternal undernutrition in the rat leads to delayed postnatal growth and elevated blood pressure of offspring. Pediatr Res 1996; 40: 438–443.

    CAS  PubMed  Google Scholar 

  52. Roseboom T, de RS, Painter R . The Dutch famine and its long-term consequences for adult health. Early Hum Dev 2006; 82: 485–491.

    PubMed  Google Scholar 

  53. Kind KL, Clifton PM, Katsman AI, Tsiounis M, Robinson JS, Owens JA . Restricted fetal growth and the response to dietary cholesterol in the guinea pig. Am J Physiol 1999; 277: R1675–R1682.

    CAS  PubMed  Google Scholar 

  54. Gluckman PD, Lillycrop KA, Vickers MH, Pleasants AB, Phillips ES, Beedle AS et al. Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proc Natl Acad Sci USA 2007; 104: 12796–12800.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ozanne SE, Hales CN . Lifespan: catch-up growth and obesity in male mice. Nature 2004; 427: 411–412.

    CAS  PubMed  Google Scholar 

  56. Zambrano E, Bautista CJ, Deas M, Martinez-Samayoa PM, Gonzalez-Zamorano M, Ledesma H et al. A low maternal protein diet during pregnancy and lactation has sex- and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat. J Physiol 2006; 571: 221–230.

    CAS  PubMed  Google Scholar 

  57. Sloboda DM, Howie GJ, Pleasants A, Gluckman PD, Vickers MH . Pre- and postnatal nutritional histories influence reproductive maturation and ovarian function in the rat. PLoS ONE 2009; 4: e6744.

    PubMed  PubMed Central  Google Scholar 

  58. Samuelsson AM, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EH et al. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 2008; 51: 383–392.

    CAS  PubMed  Google Scholar 

  59. Bruce KD, Cagampang FR, Argenton M, Zhang J, Ethirajan PL, Burdge GC et al. Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology 2009; 50: 1796–1808.

    CAS  PubMed  Google Scholar 

  60. Khan I, Dekou V, Hanson M, Poston L, Taylor P . Predictive adaptive responses to maternal high-fat diet prevent endothelial dysfunction but not hypertension in adult rat offspring. Circulation 2004; 110: 1097–1102.

    CAS  PubMed  Google Scholar 

  61. Korotkova M, Gabrielsson BG, Holmang A, Larsson BM, Hanson LA, Strandvik B . Gender-related long-term effects in adult rats by perinatal dietary ratio of n-6/n-3 fatty acids. Am J Physiol Regul Integr Comp Physiol 2005; 288: R575–R579.

    CAS  PubMed  Google Scholar 

  62. Kozak R, Burlet A, Burlet C, Beck B . Dietary composition during fetal and neonatal life affects neuropeptide Y functioning in adult offspring. Brain Res Dev Brain Res 2000; 125: 75–82.

    CAS  PubMed  Google Scholar 

  63. Khan IY, Dekou V, Douglas G, Jensen R, Hanson MA, Poston L et al. A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am J Physiol Regul Integr Comp Physiol 2005; 288: R127–R133.

    CAS  PubMed  Google Scholar 

  64. Plagemann A . Perinatal programming and functional teratogenesis: impact on body weight regulation and obesity. Physiol Behav 2005; 86: 661–668.

    CAS  PubMed  Google Scholar 

  65. Plagemann A, Harder T, Rake A, Melchior K, Rohde W, Dorner G . Increased number of galanin-neurons in the paraventricular hypothalamic nucleus of neonatally overfed weanling rats. Brain Res 1999; 818: 160–163.

    CAS  PubMed  Google Scholar 

  66. Schmidt I, Fritz A, Scholch C, Schneider D, Simon E, Plagemann A . The effect of leptin treatment on the development of obesity in overfed suckling Wistar rats. Int J Obes Relat Metab Disord 2001; 25: 1168–1174.

    CAS  PubMed  Google Scholar 

  67. Franke K, Harder T, Aerts L, Melchior K, Fahrenkrog S, Rodekamp E et al. ‘Programming’ of orexigenic and anorexigenic hypothalamic neurons in offspring of treated and untreated diabetic mother rats. Brain Res 2005; 1031: 276–283.

    CAS  PubMed  Google Scholar 

  68. Waterland RA, Travisano M, Tahiliani KG, Rached MT, Mirza S . Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes (Lond) 2008; 32: 1373–1379.

    CAS  Google Scholar 

  69. Muhlhausler BS . Programming of the appetite-regulating neural network: a link between maternal overnutrition and the programming of obesity? J Neuroendocrinol 2007; 19: 67–72.

    CAS  PubMed  Google Scholar 

  70. Davidowa H, Plagemann A . Decreased inhibition by leptin of hypothalamic arcuate neurons in neonatally overfed young rats. Neuroreport 2000; 11: 2795–2798.

    CAS  PubMed  Google Scholar 

  71. Plagemann A, Harder T, Rake A, Janert U, Melchior K, Rohde W et al. Morphological alterations of hypothalamic nuclei due to intrahypothalamic hyperinsulinism in newborn rats. Int J Dev Neurosci 1999; 17: 37–44.

    CAS  PubMed  Google Scholar 

  72. Plagemann A, Harder T, Melchior K, Rake A, Rohde W, Dorner G . Elevation of hypothalamic neuropeptide Y-neurons in adult offspring of diabetic mother rats. Neuroreport 1999; 10: 3211–3216.

    CAS  PubMed  Google Scholar 

  73. Goldberg AD, Allis CD, Bernstein E . Epigenetics: a landscape takes shape. Cell 2007; 128: 635–638.

    CAS  PubMed  Google Scholar 

  74. Bird A . DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16: 6–21.

    CAS  PubMed  Google Scholar 

  75. Razin A, Szyf M . DNA methylation patterns. Formation and function. Biochim Biophys Acta 1984; 782: 331–342.

    CAS  PubMed  Google Scholar 

  76. Bird A, Macleod D . Reading the DNA methylation signal. Cold Spring Harb Symp Quant Biol 2004; 69: 113–118.

    CAS  PubMed  Google Scholar 

  77. Strahl BD, Ohba R, Cook RG, Allis CD . Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc Natl Acad Sci USA 1999; 96: 14967–14972.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T . Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001; 410: 116–120.

    CAS  PubMed  Google Scholar 

  79. Zegerman P, Canas B, Pappin D, Kouzarides T . Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. J Biol Chem 2002; 277: 11621–11624.

    CAS  PubMed  Google Scholar 

  80. Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI . Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 2001; 292: 110–113.

    CAS  PubMed  Google Scholar 

  81. Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T . DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet 2000; 24: 88–91.

    CAS  PubMed  Google Scholar 

  82. Rountree MR, Bachman KE, Baylin SB . DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 2000; 25: 269–277.

    CAS  PubMed  Google Scholar 

  83. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439: 871–874.

    CAS  PubMed  Google Scholar 

  84. Li E, Beard C, Jaenisch R . Role for DNA methylation in genomic imprinting. Nature 1993; 366: 362–365.

    CAS  PubMed  Google Scholar 

  85. Waterland RA, Jirtle RL . Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 2003; 23: 5293–5300.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Walsh CP, Chaillet JR, Bestor TH . Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 1998; 20: 116–117.

    CAS  PubMed  Google Scholar 

  87. Reik W, Dean W, Walter J . Epigenetic reprogramming in mammalian development. Science 2001; 293: 1089–1093.

    CAS  PubMed  Google Scholar 

  88. Gidekel S, Bergman Y . A unique developmental pattern of Oct-3/4 DNA methylation is controlled by a cis-demodification element. J Biol Chem 2002; 277: 34521–34530.

    CAS  PubMed  Google Scholar 

  89. Hershko AY, Kafri T, Fainsod A, Razin A . Methylation of HoxA5 and HoxB5 and its relevance to expression during mouse development. Gene 2003; 302: 65–72.

    CAS  PubMed  Google Scholar 

  90. Benvenisty N, Szyf M, Mencher D, Razin A, Reshef L . Tissue-specific hypomethylation and expression of rat phosphoenolpyruvate carboxykinase gene induced by in vivo treatment of fetuses and neonates with 5-azacytidine. Biochemistry 1985; 24: 5015–5019.

    CAS  PubMed  Google Scholar 

  91. Grainger RM, Hazard-Leonards RM, Samaha F, Hougan LM, Lesk MR, Thomsen GH . Is hypomethylation linked to activation of delta-crystallin genes during lens development? Nature 1983; 306: 88–91.

    CAS  PubMed  Google Scholar 

  92. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7: 847–854.

    CAS  PubMed  Google Scholar 

  93. Weaver IC, Champagne FA, Brown SE, Dymov S, Sharma S, Meaney MJ et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci 2005; 25: 11045–11054.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Pham TD, MacLennan NK, Chiu CT, Laksana GS, Hsu JL, Lane RH . Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term IUGR rat kidney. Am J Physiol Regul Integr Comp Physiol 2003; 285: R962–R970.

    CAS  PubMed  Google Scholar 

  95. Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM . Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod 2000; 62: 1526–1535.

    CAS  PubMed  Google Scholar 

  96. Khosla S, Dean W, Reik W, Feil R . Culture of preimplantation embryos and its long-term effects on gene expression and phenotype. Hum Reprod Update 2001; 7: 419–427.

    CAS  PubMed  Google Scholar 

  97. Cox GF, Burger J, Lip V, Mau UA, Sperling K, Wu BL et al. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet 2002; 71: 162–164.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. DeBaun MR, Niemitz EL, Feinberg AP . Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 2003; 72: 156–160.

    CAS  PubMed  Google Scholar 

  99. Wolff GL, Kodell RL, Moore SR, Cooney CA . Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 1998; 12: 949–957.

    CAS  PubMed  Google Scholar 

  100. Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA . Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr 2007; 97: 435–439.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC . Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 2007; 97: 1064–1073.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Lillycrop KA, Phillips ES, Torrens C, Hanson MA, Jackson AA, Burdge GC . Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPARalpha promoter of the offspring. Br J Nutr 2008; 100: 278–282.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ . Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res 2007; 100: 520–526.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 2008; 105: 17046–17049.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 2009; 18: 4046–4053.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Plagemann A, Harder T, Brunn M, Harder A, Roepke K, Wittrock-Staar M et al. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol 2009; 587: 4963–4976.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Bhattacharya SK, Ramchandani S, Cervoni N, Szyf M . A mammalian protein with specific demethylase activity for mCpG DNA. Nature 1999; 397: 579–583.

    CAS  PubMed  Google Scholar 

  108. Zhu B, Zheng Y, Angliker H, Schwarz S, Thiry S, Siegmann M et al. 5-Methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence. Nucleic Acids Res 2000; 28: 4157–4165.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Barreto G, Schafer A, Marhold J, Stach D, Swaminathan SK, Handa V et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 2007; 445: 671–675.

    CAS  PubMed  Google Scholar 

  110. Jost JP . Nuclear extracts of chicken embryos promote an active demethylation of DNA by excision repair of 5-methyldeoxycytidine. Proc Natl Acad Sci USA 1993; 90: 4684–4688.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Miller CA, Sweatt JD . Covalent modification of DNA regulates memory formation. Neuron 2007; 53: 857–869.

    CAS  PubMed  Google Scholar 

  112. Kersh EN, Fitzpatrick DR, Murali-Krishna K, Shires J, Speck SH, Boss JM et al. Rapid demethylation of the IFN-gamma gene occurs in memory but not naive CD8 T cells. J Immunol 2006; 176: 4083–4093.

    CAS  PubMed  Google Scholar 

  113. Szyf M . The dynamic epigenome and its implications in toxicology. Toxicol Sci 2007; 100: 7–23.

    CAS  PubMed  Google Scholar 

  114. Petrie L, Duthie SJ, Rees WD, McConnell JM . Serum concentrations of homocysteine are elevated during early pregnancy in rodent models of fetal programming. Br J Nutr 2002; 88: 471–477.

    CAS  PubMed  Google Scholar 

  115. Jackson-Grusby L, Beard C, Possemato R, Tudor M, Fambrough D, Csankovszki G et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat Genet 2001; 27: 31–39.

    CAS  PubMed  Google Scholar 

  116. Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K et al. S-Adenosylmethionine and methylation. FASEB J 1996; 10: 471–480.

    CAS  PubMed  Google Scholar 

  117. Burdge GC, Lillycrop KA, Phillips ES, Slater-Jefferies JL, Jackson AA, Hanson MA . Folic acid supplementation during the juvenile-pubertal period in rats modifies the phenotype and epigenotype induced by prenatal nutrition. J Nutr 2009; 139: 1054–1060.

    CAS  PubMed  Google Scholar 

  118. Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A et al. Neonatal leptin treatment reverses developmental programming. Endocrinology 2005; 146: 4211–4216.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K A Lillycrop.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lillycrop, K., Burdge, G. Epigenetic changes in early life and future risk of obesity. Int J Obes 35, 72–83 (2011). https://doi.org/10.1038/ijo.2010.122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2010.122

Keywords

This article is cited by

Search

Quick links