Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differential coexpression analysis of obesity-associated networks in human subcutaneous adipose tissue

Abstract

Objective:

To use a unique obesity-discordant sib-pair study design to combine differential expression analysis, expression quantitative trait loci (eQTLs) mapping and a coexpression regulatory network approach in subcutaneous human adipose tissue to identify genes relevant to the obese state.

Study design:

Genome-wide transcript expression in subcutaneous human adipose tissue was measured using Affymetrix U133 Plus 2.0 microarrays (Affymetrix, Santa Clara, CA, USA), and genome-wide genotyping data was obtained using an Applied Biosystems (Applied Biosystems; Life Technologies, Carlsbad, CA, USA) SNPlex linkage panel.

Subjects:

A total of 154 Swedish families ascertained through an obese proband (body mass index (BMI) >30 kg m−2) with a discordant sibling (BMI>10 kg m−2 less than proband).

Results:

Approximately one-third of the transcripts were differentially expressed between lean and obese siblings. The cellular adhesion molecules (CAMs) KEGG grouping contained the largest number of differentially expressed genes under cis-acting genetic control. By using a novel approach to contrast CAMs coexpression networks between lean and obese siblings, a subset of differentially regulated genes was identified, with the previously GWAS obesity-associated neuronal growth regulator 1 (NEGR1) as a central hub. Independent analysis using mouse data demonstrated that this finding of NEGR1 is conserved across species.

Conclusion:

Our data suggest that in addition to its reported role in the brain, NEGR1 is also expressed in subcutaneous adipose tissue and acts as a central ‘hub’ in an obesity-related transcript network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Kelly T, Yang W, Chen CS, Reynolds K, He J . Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond) 2008; 32: 1431–1437.

    Article  CAS  Google Scholar 

  2. Haslam DW, James WP . Obesity. Lancet 2005; 366: 1197–1209.

    Article  Google Scholar 

  3. Walley AJ, Asher JE, Froguel P . The genetic contribution to non-syndromic human obesity. Nat Rev Genet 2009; 10: 431–442.

    Article  CAS  Google Scholar 

  4. Saunders CL, Chiodini BD, Sham P, Lewis CM, Abkevich V, Adeyemo AA et al. Meta-analysis of genome-wide linkage studies in BMI and obesity. Obesity (Silver Spring) 2007; 15: 2263–2275.

    Article  Google Scholar 

  5. Hinney A, Nguyen TT, Scherag A, Friedel S, Bronner G, Muller TD et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One 2007; 2: e1361.

    Article  Google Scholar 

  6. Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 2009; 41: 18–24.

    Article  CAS  Google Scholar 

  7. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 2009; 41: 25–34.

    Article  CAS  Google Scholar 

  8. Meyre D, Delplanque J, Chevre JC, Lecoeur C, Lobbens S, Gallina S et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet 2009; 41: 157–159.

    Article  CAS  Google Scholar 

  9. Walters RG, Jacquemont S, Valsesia A, de Smith AJ, Martinet D, Andersson J et al. A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. Nature 2010; 463: 671–675.

    Article  CAS  Google Scholar 

  10. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 2003; 422: 297–302.

    Article  CAS  Google Scholar 

  11. Idaghdour Y, Storey JD, Jadallah SJ, Gibson G . A genome-wide gene expression signature of environmental geography in leukocytes of Moroccan Amazighs. PLoS Genet 2008; 4: e1000052.

    Article  Google Scholar 

  12. Schadt EE . Molecular networks as sensors and drivers of common human diseases. Nature 2009; 461: 218–223.

    Article  CAS  Google Scholar 

  13. Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M . Mapping complex disease traits with global gene expression. Nat Rev Genet 2009; 10: 184–194.

    Article  CAS  Google Scholar 

  14. Petretto E, Mangion J, Dickens NJ, Cook SA, Kumaran MK, Lu H et al. Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet 2006; 2: e172.

    Article  Google Scholar 

  15. Gerrits A, Li Y, Tesson BM, Bystrykh LV, Weersing E, Ausema A et al. Expression quantitative trait loci are highly sensitive to cellular differentiation state. PLoS Genet 2009; 5: e1000692.

    Article  Google Scholar 

  16. Wellen KE, Hotamisligil GS . Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 2003; 112: 1785–1788.

    Article  CAS  Google Scholar 

  17. Vazquez-Vela ME, Torres N, Tovar AR . White adipose tissue as endocrine organ and its role in obesity. Arch Med Res 2008; 39: 715–728.

    Article  CAS  Google Scholar 

  18. van Beek EA, Bakker AH, Kruyt PM, Hofker MH, Saris WH, Keijer J . Intra- and inter individual variation in gene expression in human adipose tissue. Pflugers Arch 2007; 453: 851–861.

    Article  Google Scholar 

  19. Jiao H, Kaaman M, Dungner E, Kere J, Arner P, Dahlman I . Association analysis of positional obesity candidate genes based on integrated data from transcriptomics and linkage analysis. Int J Obes (Lond) 2008; 32: 816–825.

    Article  CAS  Google Scholar 

  20. Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ et al. Variations in DNA elucidate molecular networks that cause disease. Nature 2008; 452: 429–435.

    Article  CAS  Google Scholar 

  21. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J et al. Genetics of gene expression and its effect on disease. Nature 2008; 452: 423–428.

    Article  CAS  Google Scholar 

  22. Carlsson LM, Jacobson P, Walley A, Froguel P, Sjostrom L, Svensson PA et al. ALK7 expression is specific for adipose tissue, reduced in obesity and correlates to factors implicated in metabolic disease. Biochem Biophys Res Commun 2009; 382: 309–314.

    Article  CAS  Google Scholar 

  23. O’Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    Article  Google Scholar 

  24. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  Google Scholar 

  25. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  Google Scholar 

  26. Poulain-Godefroy O, Lecoeur C, Pattou F, Fruhbeck G, Froguel P . Inflammation is associated with a decrease of lipogenic factors in omental fat in women. Am J Physiol Regul Integr Comp Physiol 2008; 295: R1–R7.

    Article  CAS  Google Scholar 

  27. Almasy L, Blangero J . Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 1998; 62: 1198–1211.

    Article  CAS  Google Scholar 

  28. Box GEP, Cox DR . An analysis of transformations. J R Stat Soc B 1964; 26: 211–252.

    Google Scholar 

  29. Abecasis GR, Wigginton JE . Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers. Am J Hum Genet 2005; 77: 754–767.

    Article  CAS  Google Scholar 

  30. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 1995; 57: 289–300.

    Google Scholar 

  31. Smyth GK . Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3: Article3.

    Article  Google Scholar 

  32. Storey JD, Tibshirani R . Statistical significance for genomewide studies. Proc Natl Acad Sci USA 2003; 100: 9440–9445.

    Article  CAS  Google Scholar 

  33. Kleinjan DA, van Heyningen V . Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 2005; 76: 8–32.

    Article  CAS  Google Scholar 

  34. Li KC . Genome-wide coexpression dynamics: theory and application. Proc Natl Acad Sci USA 2002; 99: 16875–16880.

    Article  CAS  Google Scholar 

  35. Choi JK, Yu U, Yoo OJ, Kim S . Differential coexpression analysis using microarray data and its application to human cancer. Bioinformatics 2005; 21: 4348–4355.

    Article  CAS  Google Scholar 

  36. Zhu D, Hero AO, Cheng H, Khanna R, Swaroop A . Network constrained clustering for gene microarray data. Bioinformatics 2005; 21: 4014–4020.

    Article  CAS  Google Scholar 

  37. Pesarin F . Multivariate Permutation Tests: With Applications in Biostatistics. Wiley: Chichester, England, 2001.

    Google Scholar 

  38. Fang G, Kuang R, Pandey G, Steinbach M, Myers CL, Kumar V . Subspace differential coexpression analysis: problem definition and a general approach. Pac Symp Biocomput 2010; 145–156.

  39. Fuller TF, Ghazalpour A, Aten JE, Drake TA, Lusis AJ, Horvath S . Weighted gene coexpression network analysis strategies applied to mouse weight. Mamm Genome 2007; 18: 463–472.

    Article  Google Scholar 

  40. Xu M, Kao MC, Nunez-Iglesias J, Nevins JR, West M, Zhou XJ . An integrative approach to characterize disease-specific pathways and their coordination: a case study in cancer. BMC Genomics 2008; 9 (Suppl 1): S12.

    Article  Google Scholar 

  41. Oldham MC, Horvath S, Geschwind DH . Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci USA 2006; 103: 17973–17978.

    Article  CAS  Google Scholar 

  42. Barabasi AL, Oltvai ZN . Network biology: understanding the cell's functional organization. Nat Rev Genet 2004; 5: 101–113.

    Article  CAS  Google Scholar 

  43. Wang S, Yehya N, Schadt EE, Wang H, Drake TA, Lusis AJ . Genetic and genomic analysis of a fat mass trait with complex inheritance reveals marked sex specificity. PLoS Genet 2006; 2: e15.

    Article  Google Scholar 

  44. Kasprzyk A, Keefe D, Smedley D, London D, Spooner W, Melsopp C et al. EnsMart: a generic system for fast and flexible access to biological data. Genome Res 2004; 14: 160–169.

    Article  CAS  Google Scholar 

  45. Roth RB, Hevezi P, Lee J, Willhite D, Lechner SM, Foster AC et al. Gene expression analyses reveal molecular relationships among 20 regions of the human CNS. Neurogenetics 2006; 7: 67–80.

    Article  CAS  Google Scholar 

  46. Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003; 4: P3.

    Article  Google Scholar 

  47. Huang DW, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  CAS  Google Scholar 

  48. Hosack DA, Dennis Jr G, Sherman BT, Lane HC, Lempicki RA . Identifying biological themes within lists of genes with EASE. Genome Biol 2003; 4: R70.

    Article  Google Scholar 

  49. Frojdo S, Vidal H, Pirola L . Alterations of insulin signaling in type 2 diabetes: a review of the current evidence from humans. Biochim Biophys Acta 2009; 1792: 83–92.

    Article  Google Scholar 

  50. Iozzo P . Viewpoints on the way to the consensus session: where does insulin resistance start? the adipose tissue. Diabetes Care 2009; 32 (Suppl 2): S168–S173.

    Article  CAS  Google Scholar 

  51. Prokopenko I, Zeggini E, Hanson RL, Mitchell BD, Rayner NW, Akan P et al. Linkage disequilibrium mapping of the replicated type 2 diabetes linkage signal on chromosome 1q. Diabetes 2009; 58: 1704–1709.

    Article  CAS  Google Scholar 

  52. Dimas AS, Deutsch S, Stranger BE, Montgomery SB, Borel C, Attar-Cohen H et al. Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 2009; 325: 1246–1250.

    Article  CAS  Google Scholar 

  53. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL . The human disease network. Proc Natl Acad Sci USA 2007; 104: 8685–8690.

    Article  CAS  Google Scholar 

  54. Bergmann S, Ihmels J, Barkai N . Similarities and differences in genome-wide expression data of six organisms. PLoS Biol 2004; 2: E9.

    Article  Google Scholar 

  55. Feldman I, Rzhetsky A, Vitkup D . Network properties of genes harboring inherited disease mutations. Proc Natl Acad Sci USA 2008; 105: 4323–4328.

    Article  CAS  Google Scholar 

  56. Miyata S, Funatsu N, Matsunaga W, Kiyohara T, Sokawa Y, Maekawa S . Expression of the IgLON cell adhesion molecules Kilon and OBCAM in hypothalamic magnocellular neurons. J Comp Neurol 2000; 424: 74–85.

    Article  CAS  Google Scholar 

  57. Hashimoto T, Yamada M, Maekawa S, Nakashima T, Miyata S . IgLON cell adhesion molecule Kilon is a crucial modulator for synapse number in hippocampal neurons. Brain Res 2008; 1224: 1–11.

    Article  CAS  Google Scholar 

  58. Bauer F, Elbers CC, Adan RA, Loos RJ, Onland-Moret NC, Grobbee DE et al. Obesity genes identified in genome-wide association studies are associated with adiposity measures and potentially with nutrient-specific food preference. Am J Clin Nutr 2009; 90: 951–959.

    Article  CAS  Google Scholar 

  59. O’Rahilly S, Farooqi IS . Human obesity: a heritable neurobehavioral disorder that is highly sensitive to environmental conditions. Diabetes 2008; 57: 2905–2910.

    Article  Google Scholar 

  60. Yang X, Deignan JL, Qi H, Zhu J, Qian S, Zhong J et al. Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nat Genet 2009; 41: 415–423.

    Article  CAS  Google Scholar 

  61. Pietilainen KH, Naukkarinen J, Rissanen A, Saharinen J, Ellonen P, Keranen H et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. PLoS Med 2008; 5: e51.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the participation of all the families and clinical staff involved in the SOS SibPair study. We thank Professor Eric Schadt for advice and the provision of the mouse data set and the staff of the Imperial College High-Performance Computing Service for their advice and support. This study was funded by Grant no. 079534/z/06/z from the Wellcome Trust, the Swedish Research Council (K2010-55X-11285-13), the Swedish foundation for Strategic Research to Sahlgrenska Center for Cardiovascular and Metabolic Research, the Swedish Diabetes foundation and the Swedish federal government under the LUA/ALF agreement. Sylvia Richardson acknowledges support from the MRC Grant G0600609.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Froguel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walley, A., Jacobson, P., Falchi, M. et al. Differential coexpression analysis of obesity-associated networks in human subcutaneous adipose tissue. Int J Obes 36, 137–147 (2012). https://doi.org/10.1038/ijo.2011.22

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2011.22

Keywords

This article is cited by

Search

Quick links