Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Integrative Biology

Adipocyte morphology and implications for metabolic derangements in acquired obesity

Abstract

Background:

Adipocyte size and number have been suggested to predict the development of metabolic complications in obesity. However, the genetic and environmental determinants behind this phenomenon remain unclear.

Methods:

We studied this question in rare-weight discordant (intra-pair difference (Δ) body mass index (BMI) 3–10 kg m−2, n=15) and concordant (ΔBMI 0–2 kg m2, n=5) young adult (22–35 years) monozygotic twin pairs identified from 10 birth cohorts of Finnish twins (n=5 500 pairs). Subcutaneous abdominal adipocyte size from surgical biopsies was measured under a light microscope. Adipocyte number was calculated from cell size and total body fat (D × A).

Results:

The concordant pairs were remarkably similar for adipocyte size and number (intra-class correlations 0.91–0.92, P<0.01), suggesting a strong genetic control of these measures. In the discordant pairs, the obese co-twins (BMI 30.6±0.9 kg m−2) had significantly larger adipocytes (volume 547±59 pl), than the lean co-twins (24.9±0.9 kg m2; 356±34 pl, P<0.001). In 8/15 pairs, the obese co-twins had less adipocytes than their co-twins. These hypoplastic obese twins had significantly higher liver fat (spectroscopy), homeostatic model assessment-index, C-reactive protein and low-density lipoprotein cholesterol than their lean co-twins. Hyperplastic obesity was observed in the rest (7/15) of the pairs, obese and lean co-twins having similar metabolic measures. In all pairs, Δadipocyte volume correlated positively and Δcell number correlated negatively with Δhomeostatic model assessment-index and Δlow-density lipoprotein, independent of Δbody fat. Transcripts most significantly correlating with Δadipocyte volume were related to a reduced mitochondrial function, membrane modifications, to DNA damage and cell death.

Conclusions:

Together, hypertrophy and hypoplasia in acquired obesity are related to metabolic dysfunction, possibly through disturbances in mitochondrial function and increased cell death within the adipose tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Arner P, Spalding KL . Fat cell turnover in humans. Biochem Biophys Res Commun 2010; 396: 101–104.

    Article  CAS  Google Scholar 

  2. Bjorntorp P, Gustafson A, Persson B . Adipose tissue fat cell size and number in relation to metabolism in endogenous hypertriglyceridemia. Acta Med Scand 1971; 190: 363–367.

    Article  CAS  Google Scholar 

  3. Salans LB, Knittle JL, Hirsch J . The role of adipose cell size and adipose tissue insulin sensitivity in the carbohydrate intolerance of human obesity. J Clin Invest 1968; 47: 153–165.

    Article  CAS  Google Scholar 

  4. Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE . Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 2000; 43: 1498–1506.

    Article  CAS  Google Scholar 

  5. Lonn M, Mehlig K, Bengtsson C, Lissner L . Adipocyte size predicts incidence of type 2 diabetes in women. FASEB J 2010; 24: 326–331.

    Article  Google Scholar 

  6. Pasarica M, Xie H, Hymel D, Bray G, Greenway F, Ravussin E et al. Lower total adipocyte number but no evidence for small adipocyte depletion in patients with type 2 diabetes. Diabetes Care 2009; 32: 900–902.

    Article  Google Scholar 

  7. Pietilainen KH, Rog T, Seppanen-Laakso T, Virtue S, Gopalacharyulu P, Tang J et al. Association of lipidome remodeling in the adipocyte membrane with acquired obesity in humans. PLoS Biol 2011; 9: e1000623.

    Article  CAS  Google Scholar 

  8. Varady KA, Tussing L, Bhutani S, Braunschweig CL . Degree of weight loss required to improve adipokine concentrations and decrease fat cell size in severely obese women. Metabolism 2009; 58: 1096–1101.

    Article  CAS  Google Scholar 

  9. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O et al. Dynamics of fat cell turnover in humans. Nature 2008; 453: 783–787.

    Article  CAS  Google Scholar 

  10. Danforth E Jr . Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Genet 2000; 26: 13.

    Article  CAS  Google Scholar 

  11. Wang MY, Grayburn P, Chen S, Ravazzola M, Orci L, Unger RH . Adipogenic capacity and the susceptibility to type 2 diabetes and metabolic syndrome. Proc Natl Acad Sci USA 2008; 105: 6139–6144.

    Article  CAS  Google Scholar 

  12. Gavrilova O, Marcus-Samuels B, Graham D, Kim JK, Shulman GI, Castle AL et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest 2000; 105: 271–278.

    Article  CAS  Google Scholar 

  13. Hammarstedt A, Sopasakis VR, Gogg S, Jansson PA, Smith U . Improved insulin sensitivity and adipose tissue dysregulation after short-term treatment with pioglitazone in non-diabetic, insulin-resistant subjects. Diabetologia 2005; 48: 96–104.

    Article  CAS  Google Scholar 

  14. Lehtovirta M, Pietilainen KH, Levalahti E, Heikkila K, Groop L, Silventoinen K et al. Evidence that BMI and type 2 diabetes share only a minor fraction of genetic variance: a follow-up study of 23,585 monozygotic and dizygotic twins from the Finnish Twin Cohort Study. Diabetologia 2010; 53: 1314–1321.

    Article  CAS  Google Scholar 

  15. Kaprio J . Twin studies in Finland 2006. Twin Res Hum Genet 2006; 9: 772–777.

    Article  Google Scholar 

  16. Naukkarinen J, Heinonen S, Hakkarainen A, Lundbom J, Vuolteenaho K, Saarinen L et al. Characterising metabolically healthy obesity in weight-discordant monozygotic twins. Diabetologia 2013; 57: 167–176.

    Article  Google Scholar 

  17. Graner M, Seppala-Lindroos A, Rissanen A, Hakkarainen A, Lundbom N, Kaprio J et al. Epicardial fat, cardiac dimensions, and low-grade inflammation in young adult monozygotic twins discordant for obesity. Am J Cardiol 2012; 109: 1295–1302.

    Article  Google Scholar 

  18. Pietilainen KH, Rissanen A, Laamanen M, Lindholm AK, Markkula H, Yki-Jarvinen H et al. Growth patterns in young adult monozygotic twin pairs discordant and concordant for obesity. Twin Res 2004; 7: 421–429.

    Article  Google Scholar 

  19. Pietrobelli A, Formica C, Wang Z, Heymsfield SB . Dual-energy X-ray absorptiometry body composition model: review of physical concepts. Am J Physiol 1996; 271: E941–E951.

    CAS  Google Scholar 

  20. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.

    Article  CAS  Google Scholar 

  21. Rodriguez A, Gomez-Ambrosi J, Catalan V, Gil MJ, Becerril S, Sainz N et al. Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. Int J Obes (Lond) 2009; 33: 541–552.

    Article  CAS  Google Scholar 

  22. Hirsch J, Gallian E . Methods for the determination of adipose cell size in man and animals. J Lipid Res 1968; 9: 110–119.

    CAS  PubMed  Google Scholar 

  23. Storey JD, Tibshirani R . Statistical significance for genomewide studies. Proc Natl Acad Sci USA 2003; 100: 9440–9445.

    Article  CAS  Google Scholar 

  24. Laakso M, Hautaniemi S . Integrative platform to translate gene sets to networks. Bioinformatics 2010; 26: 1802–1803.

    Article  CAS  Google Scholar 

  25. Ovaska K, Laakso M, Haapa-Paananen S, Louhimo R, Chen P, Aittomaki V et al. Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme. Genome Med 2010; 2: 65.

    Article  Google Scholar 

  26. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing: Austria, Vienna, 2011.

  27. Bretscher A, Edwards K, Fehon RG . ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 2002; 3: 586–599.

    Article  CAS  Google Scholar 

  28. Fuster DG, Zhang J, Shi M, Bobulescu IA, Andersson S, Moe OW . Characterization of the sodium/hydrogen exchanger NHA2. J Am Soc Nephrol 2008; 19: 1547–1556.

    Article  CAS  Google Scholar 

  29. Yamazaki H, Nakata T, Okada Y, Hirokawa N . KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport. J Cell Biol 1995; 130: 1387–1399.

    Article  CAS  Google Scholar 

  30. Otey CA, Rachlin A, Moza M, Arneman D, Carpen O . The palladin/myotilin/myopalladin family of actin-associated scaffolds. Int Rev Cytol 2005; 246: 31–58.

    Article  CAS  Google Scholar 

  31. Fidalgo M, Guerrero A, Fraile M, Iglesias C, Pombo CM, Zalvide J . Adaptor protein cerebral cavernous malformation 3 (CCM3) mediates phosphorylation of the cytoskeletal proteins ezrin/radixin/moesin by mammalian Ste20-4 to protect cells from oxidative stress. J Biol Chem 2012; 287: 11556–11565.

    Article  CAS  Google Scholar 

  32. Hebert M, Potin S, Sebbagh M, Bertoglio J, Breard J, Hamelin J . Rho-ROCK-dependent ezrin-radixin-moesin phosphorylation regulates Fas-mediated apoptosis in Jurkat cells. J Immunol 2008; 181: 5963–5973.

    Article  CAS  Google Scholar 

  33. Calandra T, Roger T . Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 2003; 3: 791–800.

    Article  CAS  Google Scholar 

  34. Li F, Jiang Z, Wang K, Guo J, Hu G, Sun L et al. Transactivation of the human NME5 gene by Sp1 in pancreatic cancer cells. Gene 2012; 503: 200–207.

    Article  CAS  Google Scholar 

  35. De Belle I, Wu JX, Sperandio S, Mercola D, Adamson ED . In vivo cloning and characterization of a new growth suppressor protein TOE1 as a direct target gene of Egr1. J Biol Chem 2003; 278: 14306–14312.

    Article  CAS  Google Scholar 

  36. Chipuk JE, Green DR . PUMA cooperates with direct activator proteins to promote mitochondrial outer membrane permeabilization and apoptosis. Cell Cycle 2009; 8: 2692–2696.

    Article  CAS  Google Scholar 

  37. Nordstrom EA, Ryden M, Backlund EC, Dahlman I, Kaaman M, Blomqvist L et al. A human-specific role of cell death-inducing DFFA (DNA fragmentation factor-alpha)-like effector A (CIDEA) in adipocyte lipolysis and obesity. Diabetes 2005; 54: 1726–1734.

    Article  Google Scholar 

  38. Han WD, Mu YM, Lu XC, Xu ZM, Li XJ, Yu L et al. Up-regulation of LRP16 mRNA by 17beta-estradiol through activation of estrogen receptor alpha (ERalpha), but not ERbeta, and promotion of human breast cancer MCF-7 cell proliferation: a preliminary report. Endocr Relat Cancer 2003; 10: 217–224.

    Article  CAS  Google Scholar 

  39. Wu Z, Li Y, Li X, Ti D, Zhao Y, Si Y et al. LRP16 integrates into NF-kappaB transcriptional complex and is required for its functional activation. PLoS One 2011; 6: e18157.

    Article  CAS  Google Scholar 

  40. Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, Hashimoto T et al. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem 1998; 273: 5678–5684.

    Article  CAS  Google Scholar 

  41. Valdivia CR, Ueda K, Ackerman MJ, Makielski JC . GPD1L links redox state to cardiac excitability by PKC-dependent phosphorylation of the sodium channel SCN5A. Am J Physiol Heart Circ Physiol 2009; 297: H1446–H1452.

    Article  CAS  Google Scholar 

  42. Steinberg SJ, Wang SJ, Kim DG, Mihalik SJ, Watkins PA . Human very-long-chain acyl-CoA synthetase: cloning, topography, and relevance to branched-chain fatty acid metabolism. Biochem Biophys Res Commun 1999; 257: 615–621.

    Article  CAS  Google Scholar 

  43. Oliveira MI, Santos SG, Oliveira MJ, Torres AL, Barbosa MA . Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation. Eur Cell Mater 2012; 24: 136–152 discussion 152-153.

    Article  CAS  Google Scholar 

  44. Gerard A, Ghiotto M, Fos C, Guittard G, Compagno D, Galy A et al. Dok-4 is a novel negative regulator of T cell activation. J Immunol 2009; 182: 7681–7689.

    Article  CAS  Google Scholar 

  45. Seong KM, Nam SY, Kim JY, Yang KH, An S, Jin YW et al. TOPORS modulates H2AX discriminating genotoxic stresses. J Biochem Mol Toxicol 2012; 26: 429–438.

    Article  CAS  Google Scholar 

  46. Rajendra R, Malegaonkar D, Pungaliya P, Marshall H, Rasheed Z, Brownell J et al. Topors functions as an E3 ubiquitin ligase with specific E2 enzymes and ubiquitinates p53. J Biol Chem 2004; 279: 36440–36444.

    Article  CAS  Google Scholar 

  47. Weger S, Hammer E, Heilbronn R . Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Lett 2005; 579: 5007–5012.

    Article  CAS  Google Scholar 

  48. Despres JP, Bouchard C . Monozygotic twin resemblance in fatness and fat cell lipolysis. Acta Genet Med Gemellol (Roma) 1984; 33: 475–480.

    Article  CAS  Google Scholar 

  49. Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE et al. Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput Biol 2009; 5: e1000324.

    Article  Google Scholar 

  50. Weyer C, Wolford JK, Hanson RL, Foley JE, Tataranni PA, Bogardus C et al. Subcutaneous abdominal adipocyte size, a predictor of type 2 diabetes, is linked to chromosome 1q21–q23 and is associated with a common polymorphism in LMNA in Pima Indians. Mol Genet Metab 2001; 72: 231–238.

    Article  CAS  Google Scholar 

  51. Prins JB, O'Rahilly S . Regulation of adipose cell number in man. Clin Sci (Colch) 1997; 92: 3–11.

    Article  CAS  Google Scholar 

  52. Permana PA, Nair S, Lee YH, Luczy-Bachman G, Vozarova De Courten B, Tataranni PA . Subcutaneous abdominal preadipocyte differentiation in vitro inversely correlates with central obesity. Am J Physiol Endocrinol Metab 2004; 286: E958–E962.

    Article  CAS  Google Scholar 

  53. van Tienen FH, van der Kallen CJ, Lindsey PJ, Wanders RJ, van Greevenbroek MM, Smeets HJ . Preadipocytes of type 2 diabetes subjects display an intrinsic gene expression profile of decreased differentiation capacity. Int J Obes (Lond) 2011; 35: 1154–1164.

    Article  CAS  Google Scholar 

  54. McLaughlin T, Sherman A, Tsao P, Gonzalez O, Yee G, Lamendola C et al. Enhanced proportion of small adipose cells in insulin-resistant vs insulin-sensitive obese individuals implicates impaired adipogenesis. Diabetologia 2007; 50: 1707–1715.

    Article  CAS  Google Scholar 

  55. Dubois SG, Heilbronn LK, Smith SR, Albu JB, Kelley DE, Ravussin E et al. Decreased expression of adipogenic genes in obese subjects with type 2 diabetes. Obesity (Silver Spring) 2006; 14: 1543–1552.

    Article  CAS  Google Scholar 

  56. Pietilainen KH, Naukkarinen J, Rissanen A, Saharinen J, Ellonen P, Keranen H et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. PLoS Med 2008; 5: e51.

    Article  Google Scholar 

  57. Jernas M, Palming J, Sjoholm K, Jennische E, Svensson PA, Gabrielsson BG et al. Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression. FASEB J 2006; 20: 1540–1542.

    Article  CAS  Google Scholar 

  58. Zhou Z, Yon Toh S, Chen Z, Guo K, Ng CP, Ponniah S et al. Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat Genet 2003; 35: 49–56.

    Article  Google Scholar 

  59. Valmaseda A, Carmona MC, Barbera MJ, Vinas O, Mampel T, Iglesias R et al. Opposite regulation of PPAR-alpha and -gamma gene expression by both their ligands and retinoic acid in brown adipocytes. Mol Cell Endocrinol 1999; 154: 101–109.

    Article  CAS  Google Scholar 

  60. Puri V, Ranjit S, Konda S, Nicoloro SM, Straubhaar J, Chawla A et al. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci USA 2008; 105: 7833–7838.

    Article  CAS  Google Scholar 

  61. Chen D, Vollmar M, Rossi MN, Phillips C, Kraehenbuehl R, Slade D et al. Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases. J Biol Chem 2011; 286: 13261–13271.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by Helsinki University Hospital Research Funds and grants from Novo Nordisk Foundation, Diabetes Research Foundation, Jalmari and Rauha Ahokas Foundation and Finnish Foundation for Cardiovascular Research. The study was supported by the Academy of Finland (grants 141054, 265240, 266286 and 263278). We thank the participants for their invaluable contributions to the study. Markku Turunen (MD) and Linda Mustelin(MD) are acknowledged for their help in the collection of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K H Pietiläinen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinonen, S., Saarinen, L., Naukkarinen, J. et al. Adipocyte morphology and implications for metabolic derangements in acquired obesity. Int J Obes 38, 1423–1431 (2014). https://doi.org/10.1038/ijo.2014.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2014.31

Keywords

This article is cited by

Search

Quick links