Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epicardial adipose tissue expression of adiponectin is lower in patients with hypertension

Abstract

Low plasma adiponectin levels are related to a higher risk of development of metabolic and cardiovascular disorders, including hypertension (HT). To date, there have been no studies supporting the relationship between epicardial adipose tissue (EAT) expression of adiponectin and HT. We collected samples of EAT from 116 patients undergoing elective cardiac surgery, mostly for coronary artery bypass grafting (n=54), valve surgery (n=49) or both (n=12). Samples of subcutaneous adipose tissue (SAT) were harvested from 85 patients. After RNA isolation, the expression of adiponectin was analysed by real-time retrotranscriptase (RT)-PCR. Baseline clinical data were obtained from medical records. The diagnosis of HT was established mostly by the patients’ general physicians following current guidelines. We included 84 hypertensive and 32 non-hypertensive patients. Mean (±s.d.) age was 70.3±7.9 years. EAT expression levels of adiponectin were lower in hypertensives (14.0±3.6 vs 15.3±3.6 arbitrary units (a.u.), P=0.06). This difference was statistically significant (odds ratio (OR) 0.828 per a.u., P=0.020) after adjustment for age, gender, body mass index, diabetes mellitus, heart failure, coronary artery disease (CAD), total cholesterol and triglyceride levels. However, SAT adiponectin mRNA levels were similar in hypertensive and non-hypertensive patients (15.3±4.2 vs 15.3±5.0 a.u., P>0.99). Adjustment for potential confounding factors hardly altered this result. Our findings indicate that EAT expression of adiponectin may be associated with HT status independently of CAD or other comorbidities, whereas SAT expression does not. These results support the hypothesis that EAT is actively implicated in global cardiovascular risk, describing its association with HT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003; 108: 2460–2466.

    Article  Google Scholar 

  2. Iacobellis G, Pistilli D, Gucciardo M, Leonetti F, Miraldi F, Brancaccio G et al. Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine 2005; 29: 251–255.

    CAS  PubMed  Google Scholar 

  3. Lindahl B, Toss H, Siegbahn A, Venge P, Wallentin L . Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. N Engl J Med 2000; 343: 1139–1147.

    Article  CAS  Google Scholar 

  4. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH . Plasma concentrations of IL-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000; 101: 1767–1772.

    Article  CAS  Google Scholar 

  5. Ridker PM, Rifai N, Pfeffer M, Sacks F, Lepage S, Braunwald E . Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation 2000; 101: 2149–2153.

    Article  CAS  Google Scholar 

  6. Trayhurn P, Beattie JH . Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 2001; 60: 329–339.

    Article  CAS  Google Scholar 

  7. Iacobellis G, Corradi D, Sharma AM . Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2005; 2: 536–543.

    Article  Google Scholar 

  8. de Vos AM, Prokop M, Roos CJ, Meijs MF, van der Schouw YT, Rutten A et al. Peri-coronary epicardial adipose tissue is related to cardiovascular risk factors and coronary artery calcification in post-menopausal women. Eur Heart J 2008; 29: 777–783.

    Article  Google Scholar 

  9. Iacobellis G, Assael F, Ribaudo MC, Zappaterreno A, Alessi G, Di Mario U et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res 2003; 11: 304–310.

    Article  Google Scholar 

  10. Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab 2003; 88: 5163–5168.

    Article  CAS  Google Scholar 

  11. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y et al. Novel modulator for endothelial adhesion molecules. Adipocyte-derived plasma protein adiponectin. Circulation 1999; 100: 2473–2476.

    Article  CAS  Google Scholar 

  12. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999; 257: 79–83.

    Article  CAS  Google Scholar 

  13. Kishida K, Nagaretani H, Kondo H, Kobayashi H, Tanaka S, Maeda N et al. Disturbed secretion of mutant adiponectin associated with the metabolic syndrome. Biochem Biophys Res Commun 2003; 306: 286–292.

    Article  CAS  Google Scholar 

  14. Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T et al. Structure–function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for the metabolic regulation and bioactivity. J Biol Chem 2003; 278: 9073–9085.

    Article  CAS  Google Scholar 

  15. Santaniemi M, Kesaniemi YA, Ukkola O . Low plasma adiponectin is an indicator of the metabolic syndrome. Eur J Endocrinol 2006; 155: 745–750.

    Article  CAS  Google Scholar 

  16. Berg AH, Combs TP, Scherer PE . ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab 2002; 13: 84–89.

    Article  CAS  Google Scholar 

  17. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20: 1595–1599.

    Article  CAS  Google Scholar 

  18. Nakamura Y, Shimada K, Fukuda D, Shimada Y, Ehara S, Hirose M et al. Implications of plasma concentrations of adiponectin in patients with coronary artery disease. Heart 2004; 90: 528–533.

    Article  CAS  Google Scholar 

  19. Wolk R, Berger P, Lennon RJ, Brilakis ES, Davison DE, Somers VK . Association between plasma adiponectin levels and unstable coronary syndromes. Eur Heart J 2007; 28: 292–298.

    Article  CAS  Google Scholar 

  20. Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB . Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 2004; 291: 1730–1737.

    Article  CAS  Google Scholar 

  21. George J, Patal S, Wexler D, Sharabi Y, Peleg E, Kamari Y et al. Circulating adiponectin concentrations in patients with congestive heart failure. Heart 2006; 92: 1420–1424.

    Article  CAS  Google Scholar 

  22. Tsutamoto T, Tanaka T, Sakai H, Ishikawa C, Fujii M, Yamamoto T et al. Total and high molecular weight adiponectin, haemodynamics, and mortality in patients with chronic heart failure. Eur Heart J 2007; 28: 1723–1730.

    Article  Google Scholar 

  23. Iwashima Y, Katsuya T, Ishikawa K, Ouchi N, Ohishi M, Sugimoto K et al. Hypoadiponectinemia is an independent risk factor for hypertension. Hypertension 2004; 43: 1318–1323.

    Article  CAS  Google Scholar 

  24. Lee HS, Lee M, Joung H . Adiponectin represents an independent risk factor for hypertension in middle aged Korean women. Asia Pac J Clin Nutr 2007; 16: 10–15.

    PubMed  Google Scholar 

  25. Cesari M, Pessina AC, Zanchetta M, De Toni R, Avogaro A, Pedon L et al. Low plasma adiponectin is associated with coronary artery disease but not with hypertension in high-risk nondiabetic patients. J Intern Med 2006; 260: 474–483.

    Article  CAS  Google Scholar 

  26. Chow WS, Cheung BM, Tso AW, Xu A, Wat NM, Fong CH et al. Hypoadiponectinemia as a predictor for the development of hypertension: a 5-year prospective study. Hypertension 2007; 49: 1455–1461.

    Article  CAS  Google Scholar 

  27. Yilmaz MI, Sonmez A, Caglar K, Celik T, Yenicesu M, Eyileten T et al. Effect of antihypertensive agents on plasma adiponectin levels in hypertensive patients with metabolic syndrome. Nephrology 2007; 12: 147–153.

    Article  CAS  Google Scholar 

  28. Iglesias MJ, Eiras S, Pineiro R, Lopez-Otero D, Gallego R, Fernandez AL et al. Gender differences in adiponectin and leptin expression in epicardial and subcutaneous adipose tissue. Findings in patients undergoing cardiac surgery. Rev Esp Cardiol 2006; 59: 1252–1260.

    Article  Google Scholar 

  29. Liu YM, Lacorte JM, Viguerie N, Poitou C, Pelloux V, Guy-Grand B et al. Adiponectin gene expression in subcutaneous adipose tissue of obese women in response to short-term very low calorie diet and refeeding. J Clin Endocrinol Metab 2003; 88: 5881–5886.

    Article  CAS  Google Scholar 

  30. Rasouli N, Yao-Borengasser A, Miles LM, Elbein SC, Kern PA . Increased plasma adiponectin in response to pioglitazone does not result from increased gene expression. Am J Physiol Endocrinol Metab 2006; 290: 42–46.

    Article  Google Scholar 

  31. Ogawa Y, Kikuchi T, Nagasaki K, Hiura M, Tanaka Y, Uchiyama M . Usefulness of serum adiponectin level as a diagnostic marker of metabolic syndrome in obese Japanese children. Hypertens Res 2005; 28: 51–57.

    Article  CAS  Google Scholar 

  32. Banegas JR, Segura J, Ruilope LM, Luque M, Garcia-Robles R, Campo C et al. Blood pressure control and physician management of hypertension in hospital hypertension units in Spain. Hypertension 2004; 43: 1338–1344.

    Article  CAS  Google Scholar 

  33. Llisterri Caro JL, Rodriguez Roca GC, Alonso Moreno FJ, Lou Arnal S, Divison Garrote JA, Santos Rodriguez JA et al. Blood pressure control in Spanish hypertensive patients in Primary Health Care Centres. PRESCAP 2002 Study. Med Clin (Barc) 2004; 122: 165–171.

    Article  Google Scholar 

  34. Gonzalez-Juanatey JR, Alegria-Ezquerra E, Aznar-Costa J, Bertomeu-Martinez V, Franch-Nadal J, Palma-Gamizf JL . Knowledge and implementation of cardiovascular risk clinical practice guidelines by general practitioners and specialists. Rev Esp Cardiol 2006; 59: 801–806.

    Article  Google Scholar 

  35. Bakris GL . A practical approach to achieving recommended blood pressure goals in diabetic patients. Arch Intern Med 2001; 161: 2661–2667.

    Article  CAS  Google Scholar 

  36. Sans S, Paluzie G, Balana L, Puig T, Balaguer-Vintro I . Trends in prevalence, awareness, treatment and control of arterial hypertension between 1986 and 1996: the MONICA-Catalonia study. Med Clin (Barc) 2001; 117: 246–253.

    Article  CAS  Google Scholar 

  37. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 2001; 86: 3815–3819.

    Article  CAS  Google Scholar 

  38. Nagasawa A, Fukui K, Funahashi T, Maeda N, Shimomura I, Kihara S et al. Effects of soy protein diet on the expression of adipose genes and plasma adiponectin. Horm Metab Res 2002; 34: 635–639.

    Article  CAS  Google Scholar 

  39. Koh KK, Quon MJ, Han SH, Ahn JY, Jin DK, Kim HS et al. Vascular and metabolic effects of combined therapy with ramipril and simvastatin in patients with type 2 diabetes. Hypertension 2005; 45: 1088–1093.

    Article  CAS  Google Scholar 

  40. Furuhashi M, Ura N, Higashiura K, Murakami H, Tanaka M, Moniwa N et al. Blockade of the renin–angiotensin system increases adiponectin concentrations in patients with essential hypertension. Hypertension 2003; 42: 76–81.

    Article  CAS  Google Scholar 

  41. Esposito K, Ciotola M, Carleo D, Schisano B, Saccomanno F, Sasso FC et al. Effect of rosiglitazone on endothelial function and inflammatory markers in patients with the metabolic syndrome. Diabetes Care 2006; 29: 1071–1076.

    Article  CAS  Google Scholar 

  42. Li W, Tonelli J, Kishore P, Owen R, Goodman E, Scherer PE et al. Insulin-sensitizing effects of thiazolidinediones are not linked to adiponectin receptor expression in human fat or muscle. Am J Physiol Endocrinol Metab 2007; 292: E1301–E1307.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Hospital Clínico Universitario de Santiago de Compostela (Santiago de Compostela, Spain) and Fundación Mutua Madrileña (Madrid, Spain). Sonia Eiras is a researcher within the Isidro Parga Pondal Program (Xunta de Galicia). We would also like to thank the staff of the Department of Heart Surgery of the Hospital Clínico de Santiago de Compostela for their kind contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Teijeira-Fernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teijeira-Fernandez, E., Eiras, S., Grigorian-Shamagian, L. et al. Epicardial adipose tissue expression of adiponectin is lower in patients with hypertension. J Hum Hypertens 22, 856–863 (2008). https://doi.org/10.1038/jhh.2008.75

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2008.75

Keywords

This article is cited by

Search

Quick links