Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Variability of resistive indices in the anterior cerebral artery during fontanel compression in preterm and term neonates measured by transcranial duplex sonography

Abstract

Objective:

To determine the normal range of resistive index (RI) variability in clinically/neurologically unremarkable preterm and term infants and to compare the hemodynamic response to transient elevation of intracranial pressure.

Study Design:

We measured RIs at baseline and following brief fontanel compression, assessing for differences in mean baseline and compression values and percent change.

Result:

One hundred and twenty-nine subjects were included in the study. Mean baseline RI and normal range were 0.7 in preterm (0.54 to 0.86) and 0.66 in term infants (0.52 to 0.8; P=0.001). Mean RI during compression was 0.71 in preterm and 0.68 in term infants (P=0.015). Mean percent change between baseline and compression was 5.86% in preterm and 7.45% in term infants (P=0.092).

Conclusion:

No difference in the hemodynamic response to transient elevation of intracranial pressure between different gestational groups, suggesting no significant differences in autoregulatory response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Strandgaard S, Paulson OB . Cerebral autoregulation. Stroke 1984; 15: 413–416.

    Article  CAS  Google Scholar 

  2. Seibert JJ, McCowan TC, Chadduck WM, Adametz JR, Glasier CM, Williamson SL et al. Duplex pulsed doppler US versus intracranial pressure in the neonate: clinical and experimental studies. Radiology 1989; 171: 155–159.

    Article  CAS  Google Scholar 

  3. Bada HS, Hajjar W, Chua C, Sumner DS . Noninvasive diagnosis of neonatal asphyxia and intraventricular hemorrhage by doppler ultrasound. J Pediatr 1979; 95: 775–779.

    Article  CAS  Google Scholar 

  4. Hill A, Volpe JJ . Decrease in pulsatile flow in the anterior cerebral arteries in infantile hydrocephalus. Pediatrics 1982; 69: 4–7.

    CAS  PubMed  Google Scholar 

  5. Pinto PS, Tekes A, Singhi S, Northington FJ, Parkinson C, Huisman TA . White-gray matter echogenicity ratio and resistive index: sonographic bedside markers of cerebral hypoxic-ischemic injury/edema? J Perinatol 2012; 32: 448–453.

    Article  CAS  Google Scholar 

  6. Lundell BP, Lindstrom DP, Arnold TG . Neonatal cerebral blood flow velocity I. an in vitro validation of the pulsed Doppler technique. Acta Paediatr Scand 1984; 73: 6–810.

    Article  Google Scholar 

  7. Goh D, Minns RA, Hendry GM, Thambyayah M, Steers AJ . Cerebrovascular resistive index assessed by duplex doppler sonography and its relationship to intracranial pressure in infantile hydrocephalus. Pediatr Radiol 1992; 22: 246–250.

    Article  CAS  Google Scholar 

  8. Taylor GA . Effect of scanning pressure on intracranial hemodynamics during transfontanellar duplex US. Radiology 1992; 185: 763–766.

    Article  CAS  Google Scholar 

  9. Taylor GA, Madsen JR . Neonatal hydrocephalus: hemodynamic response to fontanelle compression— correlation with intracranial pressure and need for shunt placement. Radiology 1996; 201: 685–689.

    Article  CAS  Google Scholar 

  10. Taylor GA, Phillips MD, Ichord RN, Carson BS, Gates JA, James CS . Intracranial compliance in infants: evaluation with doppler US. Radiology 1994; 191: 787–791.

    Article  CAS  Google Scholar 

  11. Pryds O . Control of cerebral circulation in the high-risk neonate. Ann Neurol 1991; 30: 321–329.

    Article  CAS  Google Scholar 

  12. Meek JH, Tyszczuk L, Elwell CE, Wyatt JS . Low cerebral blood flow is a risk factor for severe intraventricular haemorrhage. Arch Dis Child Fetal Neonatal Ed 1999; 81: F15–F18.

    Article  CAS  Google Scholar 

  13. Chadduck WM, Seibert JJ, Adametz J, Glasier CM, Crabtree M, Stansell CA . Cranial doppler ultrasonography correlates with criteria for ventriculoperitoneal shunting. Surg Neurol 1989; 31: 122–128.

    Article  CAS  Google Scholar 

  14. Riggo JD, Kolarovszki B, Richterova R, Kolarovszka H, Sutovsky J, Durdikc P . Measurement of the blood flow velocity in the pericallosal artery of children with hydrocephalus by transcranial doppler ultrasonography—preliminary results. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2007; 151: 285–289.

    Article  Google Scholar 

  15. de Oliveira RS, Machado HR . Transcranial color-coded doppler ultrasonography for evaluation of children with hydrocephalus. Neurosurg Focus 2003; 15: ECP3.

    Article  Google Scholar 

  16. Couture A, Veyrac C, Baud C, Saguintaah M, Ferran JL . Advanced cranial ultrasound: Transfontanellar doppler imaging in neonates. Eur Radiol 2001; 11: 2399–2410.

    Article  CAS  Google Scholar 

  17. Pryds O, Greisen G, Lou H, Friis-Hansen B . Heterogeneity of cerebral vasoreactivity in preterm infants supported by mechanical ventilation. J Pediatr 1989; 115: 638–645.

    Article  CAS  Google Scholar 

  18. Tsuji M, Saul JP, du Plessis A, Eichenwald E, Sobh J, Crocker R et al. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics 2000; 106: 625–632.

    Article  CAS  Google Scholar 

  19. Boylan GB, Young K, Panerai RB, Rennie JM, Evans DH . Dynamic cerebral autoregulation in sick newborn infants. Pediatr Res 2000; 48: 12–17.

    Article  CAS  Google Scholar 

  20. Tyszczuk L, Meek J, Elwell C, Wyatt JS . Cerebral blood flow is independent of mean arterial blood pressure in preterm infants undergoingintensive care. Pediatrics 1998; 102: 337–341.

    Article  CAS  Google Scholar 

  21. Horgan JG, Rumack CM, Hay T, Manco-Johnson ML, Merenstein GB, Esola C . Absolute intracranial blood-flow velocities evaluated by duplex doppler sonography in asymptomatic preterm and term neonates. AJR Am J Roentgenol 1989; 152: 1059–1064.

    Article  CAS  Google Scholar 

  22. Perlman JM, Hill A, Volpe JJ . The effect of patent ductus arteriosus on flow velocity in the anterior cerebral arteries: ductal steal in the premature newborn infant. J Pediatr 1981; 99: 767–771.

    Article  CAS  Google Scholar 

  23. Lemmers PM, Toet MC, van Bel F . Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation inpreterm infants. Pediatrics 2008; 121: 142–147.

    Article  Google Scholar 

  24. Lipman B, Serwer GA, Brazy JE . Abnormal cerebral hemodynamics in preterm infants with patent ductus arteriosus. Pediatrics 1982; 69: 778–781.

    CAS  Google Scholar 

  25. Siassi B, Blanco C, Cabal LA, Coran AG . Incidence and clinical features of patent ductus arteriosus in low-birthweight infants: a prospective analysis of 150 consecutively born infants. Pediatrics 1976; 57: 347–351.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T A G M Huisman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamora, C., Tekes, A., Alqahtani, E. et al. Variability of resistive indices in the anterior cerebral artery during fontanel compression in preterm and term neonates measured by transcranial duplex sonography. J Perinatol 34, 306–310 (2014). https://doi.org/10.1038/jp.2014.11

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2014.11

Keywords

This article is cited by

Search

Quick links