Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Investigating human leukemogenesis: from cell lines to in vivo models of human leukemia

Abstract

The hematopoietic system produces appropriate levels of blood cells over an individual's lifetime through a careful balance of differentiation, proliferation and self-renewal. The acquisition of genetic and epigenetic alterations leads to deregulation of these processes and the development of acute leukemias. A prerequisite to targeted therapies directed against these malignancies is a thorough understanding of the processes that subvert the normal developmental program of the hematopoietic system. This involves identifying the molecular lesions responsible for malignant transformation, their mechanisms of action and the cell type(s) in which they occur. Over the last 3 decades, significant progress has been made through the identification of recurrent genetic alterations and translocations in leukemic blast populations, and their subsequent functional characterization in cell lines and/or mouse models. Recently, primary human hematopoietic cells have emerged as a complementary means to characterize leukemic oncogenes. This approach enables the process of leukemogenesis to be precisely modeled in the appropriate cellular context: from primary human hematopoietic cells to leukemic stem cells capable of initiating disease in vivo. Here we review the model systems used to study leukemogenesis, and focus particularly on recent advances provided by in vitro and in vivo studies with primary human hematopoietic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Vogelstein B, Kinzler KW . Cancer genes and the pathways they control. Nat Med 2004; 10: 789–799.

    Article  CAS  PubMed  Google Scholar 

  2. Warner JK, Wang JC, Hope KJ, Jin L, Dick JE . Concepts of human leukemic development. Oncogene 2004; 23: 7164–7177.

    CAS  PubMed  Google Scholar 

  3. Greaves MF, Wiemels J . Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer 2003; 3: 639–649.

    Article  CAS  PubMed  Google Scholar 

  4. Rowley JD, Golomb HM, Dougherty C . 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet 1977; 1: 549–550.

    CAS  PubMed  Google Scholar 

  5. Rowley JD, Golomb HM, Vardiman J, Fukuhara S, Dougherty C, Potter D . Further evidence for a non-random chromosomal abnormality in acute promyelocytic leukemia. Int J Cancer 1977; 20: 869–872.

    CAS  PubMed  Google Scholar 

  6. Liu P, Tarle SA, Hajra A, Claxton DF, Marlton P, Freedman M et al. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 1993; 261: 1041–1044.

    CAS  PubMed  Google Scholar 

  7. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  PubMed  Google Scholar 

  8. Mitelman F, Johansson B, Mertens F . The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 2007; 7: 233–245.

    CAS  PubMed  Google Scholar 

  9. Falini B, Nicoletti I, Martelli MF, Mecucci C . Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood 2007; 109: 874–885.

    Article  CAS  PubMed  Google Scholar 

  10. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764.

    Article  CAS  PubMed  Google Scholar 

  11. Advani AS . FLT3 and acute myelogenous leukemia: biology, clinical significance and therapeutic applications. Curr Pharm Des 2005; 11: 3449–3457.

    CAS  PubMed  Google Scholar 

  12. Taketani T, Taki T, Sugita K, Furuichi Y, Ishii E, Hanada R et al. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood 2004; 103: 1085–1088.

    CAS  PubMed  Google Scholar 

  13. Shay JW, Wright WE, Werbin H . Defining the molecular mechanisms of human cell immortalization. Biochim Biophys Acta 1991; 1072: 1–7.

    CAS  PubMed  Google Scholar 

  14. Pulvertaft JV . Cytology of Burkitt's tumour (African lymphoma). Lancet 1964; 1: 238–240.

    CAS  PubMed  Google Scholar 

  15. Drexler HG, Matsuo AY, MacLeod RA . Continuous hematopoietic cell lines as model systems for leukemia-lymphoma research. Leuk Res 2000; 24: 881–911.

    CAS  PubMed  Google Scholar 

  16. Koeffler HP, Golde DW . Human myeloid leukemia cell lines: a review. Blood 1980; 56: 344–350.

    CAS  PubMed  Google Scholar 

  17. Drexler HG, MacLeod RA, Borkhardt A, Janssen JW . Recurrent chromosomal translocations and fusion genes in leukemia-lymphoma cell lines. Leukemia 1995; 9: 480–500.

    CAS  PubMed  Google Scholar 

  18. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    CAS  PubMed  Google Scholar 

  19. Lazarus H, McCoy TA, Farber S, Barell EF, Foley GE . Nutritional requirements of human leukemic cells. Asparagine requirements and the effect of L-asparaginase. Exp Cell Res 1969; 57: 134–138.

    CAS  PubMed  Google Scholar 

  20. Breitman TR, Selonick SE, Collins SJ . Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci USA 1980; 77: 2936–2940.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, Lydon NB et al. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR–ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 1997; 90: 4947–4952.

    CAS  PubMed  Google Scholar 

  22. Charrad RS, Gadhoum Z, Qi J, Glachant A, Allouche M, Jasmin C et al. Effects of anti-CD44 monoclonal antibodies on differentiation and apoptosis of human myeloid leukemia cell lines. Blood 2002; 99: 290–299.

    CAS  PubMed  Google Scholar 

  23. Drexler HG, Quentmeier H, MacLeod RA . Malignant hematopoietic cell lines: in vitro models for the study of MLL gene alterations. Leukemia 2004; 18: 227–232.

    CAS  PubMed  Google Scholar 

  24. Vangala RK, Heiss-Neumann MS, Rangatia JS, Singh SM, Schoch C, Tenen DG et al. The myeloid master regulator transcription factor PU.1 is inactivated by AML1–ETO in t(8;21) myeloid leukemia. Blood 2003; 101: 270–277.

    CAS  PubMed  Google Scholar 

  25. Kawabe T, Muslin AJ, Korsmeyer SJ . HOX11 interacts with protein phosphatases PP2A and PP1 and disrupts a G2/M cell-cycle checkpoint. Nature 1997; 385: 454–458.

    CAS  PubMed  Google Scholar 

  26. Palacios R, Steinmetz M . Il-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell 1985; 41: 727–734.

    CAS  PubMed  Google Scholar 

  27. Daley GQ, Baltimore D . Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci USA 1988; 85: 9312–9316.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Warmuth M, Kim S, Gu XJ, Xia G, Adrian F . Ba/F3 cells and their use in kinase drug discovery. Curr Opin Oncol 2007; 19: 55–60.

    CAS  PubMed  Google Scholar 

  29. Xia ZB, Popovic R, Chen J, Theisler C, Stuart T, Santillan DA et al. The MLL fusion gene, MLL-AF4, regulates cyclin-dependent kinase inhibitor CDKN1B (p27kip1) expression. Proc Natl Acad Sci USA 2005; 102: 14028–14033.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Drexler HG, MacLeod RA . Leukemia-lymphoma cell lines as model systems for hematopoietic research. Ann Med 2003; 35: 404–412.

    CAS  PubMed  Google Scholar 

  31. Elefanty AG, Cory S . bcr-abl-Induced cell lines can switch from mast cell to erythroid or myeloid differentiation in vitro. Blood 1992; 79: 1271–1281.

    CAS  PubMed  Google Scholar 

  32. Caslini C, Shilatifard A, Yang L, Hess JL . The amino terminus of the mixed lineage leukemia protein (MLL) promotes cell cycle arrest and monocytic differentiation. Proc Natl Acad Sci USA 2000; 97: 2797–2802.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Joh T, Hosokawa Y, Suzuki R, Takahashi T, Seto M . Establishment of an inducible expression system of chimeric MLL-LTG9 protein and inhibition of Hox a7, Hox b7 and Hox c9 expression by MLL-LTG9 in 32Dcl3 cells. Oncogene 1999; 18: 1125–1130.

    CAS  PubMed  Google Scholar 

  34. Ayton PM, Cleary ML . Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 2003; 17: 2298–2307.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Barabé F, Kennedy JA, Hope KJ, Dick JE . Modeling the initiation and progression of human acute leukemia in mice. Science 2007; 316: 600–604.

    PubMed  Google Scholar 

  36. Bernardi R, Grisendi S, Pandolfi PP . Modelling haematopoietic malignancies in the mouse and therapeutical implications. Oncogene 2002; 21: 3445–3458.

    CAS  PubMed  Google Scholar 

  37. Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J . Acute leukaemia in bcr/abl transgenic mice. Nature 1990; 344: 251–253.

    CAS  PubMed  Google Scholar 

  38. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 1985; 318: 533–538.

    CAS  PubMed  Google Scholar 

  39. He LZ, Tribioli C, Rivi R, Peruzzi D, Pelicci PG, Soares V et al. Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc Natl Acad Sci USA 1997; 94: 5302–5307.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yergeau DA, Hetherington CJ, Wang Q, Zhang P, Sharpe AH, Binder M et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1–ETO fusion gene. Nat Genet 1997; 15: 303–306.

    CAS  PubMed  Google Scholar 

  41. Higuchi M, O’Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR . Expression of a conditional AML1–ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002; 1: 63–74.

    CAS  PubMed  Google Scholar 

  42. Prosser H, Bradley A . Transgenics at breaking-point. Cancer Cell 2003; 3: 411–413.

    CAS  PubMed  Google Scholar 

  43. Forster A, Pannell R, Drynan LF, Codrington R, Daser A, Metzler M et al. The invertor knock-in conditional chromosomal translocation mimic. Nat Methods 2005; 2: 27–30.

    CAS  PubMed  Google Scholar 

  44. Forster A, Pannell R, Drynan LF, McCormack M, Collins EC, Daser A et al. Engineering de novo reciprocal chromosomal translocations associated with Mll to replicate primary events of human cancer. Cancer Cell 2003; 3: 449–458.

    CAS  PubMed  Google Scholar 

  45. Drynan LF, Pannell R, Forster A, Chan NM, Cano F, Daser A et al. Mll fusions generated by Cre-loxP-mediated de novo translocations can induce lineage reassignment in tumorigenesis. EMBO J 2005; 24: 3136–3146.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lavau C, Szilvassy SJ, Slany R, Cleary ML . Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J 1997; 16: 4226–4237.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Daley GQ, Van Etten RA, Baltimore D . Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830.

    CAS  PubMed  Google Scholar 

  48. Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998; 92: 3780–3792.

    CAS  PubMed  Google Scholar 

  49. Ren R . Modeling the dosage effect of oncogenes in leukemogenesis. Curr Opin Hematol 2004; 11: 25–34.

    PubMed  Google Scholar 

  50. Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G . Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J 1998; 17: 3714–3725.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ye D, Wolff N, Li L, Zhang S, Ilaria Jr RL . STAT5 signaling is required for the efficient induction and maintenance of CML in mice. Blood 2006; 107: 4917–4925.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL . Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003; 17: 3029–3035.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N et al. MOZ–TIF2, but not BCR–ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004; 6: 587–596.

    CAS  PubMed  Google Scholar 

  54. Jamieson CH, Weissman IL, Passegue E . Chronic versus acute myelogenous leukemia: a question of self-renewal. Cancer Cell 2004; 6: 531–533.

    CAS  PubMed  Google Scholar 

  55. Anisimov VN, Ukraintseva SV, Yashin AI . Cancer in rodents: does it tell us about cancer in humans? Nat Rev Cancer 2005; 5: 807–819.

    CAS  PubMed  Google Scholar 

  56. Land H, Parada LF, Weinberg RA . Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 1983; 304: 596–602.

    CAS  PubMed  Google Scholar 

  57. Ruley HE . Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 1983; 304: 602–606.

    CAS  PubMed  Google Scholar 

  58. Rangarajan A, Hong SJ, Gifford A, Weinberg RA . Species- and cell type-specific requirements for cellular transformation. Cancer Cell 2004; 6: 171–183.

    CAS  PubMed  Google Scholar 

  59. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011–2015.

    CAS  PubMed  Google Scholar 

  60. Forsyth NR, Wright WE, Shay JW . Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again. Differentiation 2002; 69: 188–197.

    CAS  PubMed  Google Scholar 

  61. Rangarajan A, Weinberg RA . Opinion: comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer 2003; 3: 952–959.

    CAS  PubMed  Google Scholar 

  62. Schwieger M, Lohler J, Fischer M, Herwig U, Tenen DG, Stocking C . A dominant-negative mutant of C/EBPalpha, associated with acute myeloid leukemias, inhibits differentiation of myeloid and erythroid progenitors of man but not mouse. Blood 2004; 103: 2744–2752.

    CAS  PubMed  Google Scholar 

  63. Rivera J, Tessarollo L . Genetic background and the dilemma of translating mouse studies to humans. Immunity 2008; 28: 1–4.

    CAS  PubMed  Google Scholar 

  64. Wang JC, Doedens M, Dick JE . Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood 1997; 89: 3919–3924.

    CAS  PubMed  Google Scholar 

  65. Hawley RG, Lieu FH, Fong AZ, Hawley TS . Versatile retroviral vectors for potential use in gene therapy. Gene Therapy 1994; 1: 136–138.

    CAS  PubMed  Google Scholar 

  66. Darley RL, Hoy TG, Baines P, Padua RA, Burnett AK . Mutant N-RAS induces erythroid lineage dysplasia in human CD34+ cells. J Exp Med 1997; 185: 1337–1347.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Shen SW, Dolnikov A, Passioura T, Millington M, Wotherspoon S, Rice A et al. Mutant N-ras preferentially drives human CD34+ hematopoietic progenitor cells into myeloid differentiation and proliferation both in vitro and in the NOD/SCID mouse. Exp Hematol 2004; 32: 852–860.

    CAS  PubMed  Google Scholar 

  68. Warner JK, Wang JC, Takenaka K, Doulatov S, McKenzie JL, Harrington L et al. Direct evidence for cooperating genetic events in the leukemic transformation of normal human hematopoietic cells. Leukemia 2005; 19: 1794–1805.

    CAS  PubMed  Google Scholar 

  69. Pereira DS, Dorrell C, Ito CY, Gan OI, Murdoch B, Rao VN et al. Retroviral transduction of TLS-ERG initiates a leukemogenic program in normal human hematopoietic cells. Proc Natl Acad Sci USA 1998; 95: 8239–8244.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Grignani F, Valtieri M, Gabbianelli M, Gelmetti V, Botta R, Luchetti L et al. PML/RAR alpha fusion protein expression in normal human hematopoietic progenitors dictates myeloid commitment and the promyelocytic phenotype. Blood 2000; 96: 1531–1537.

    CAS  PubMed  Google Scholar 

  71. Buske C, Feuring-Buske M, Antonchuk J, Rosten P, Hogge DE, Eaves CJ et al. Overexpression of HOXA10 perturbs human lymphomyelopoiesis in vitro and in vivo. Blood 2001; 97: 2286–2292.

    CAS  PubMed  Google Scholar 

  72. Chalandon Y, Jiang X, Hazlewood G, Loutet S, Conneally E, Eaves A et al. Modulation of p210(BCR–ABL) activity in transduced primary human hematopoietic cells controls lineage programming. Blood 2002; 99: 3197–3204.

    CAS  PubMed  Google Scholar 

  73. Cammenga J, Mulloy JC, Berguido FJ, MacGrogan D, Viale A, Nimer SD . Induction of C/EBPalpha activity alters gene expression and differentiation of human CD34+ cells. Blood 2003; 101: 2206–2214.

    CAS  PubMed  Google Scholar 

  74. Mulloy JC, Cammenga J, Berguido FJ, Wu K, Zhou P, Comenzo RL et al. Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood 2003; 102: 4369–4376.

    CAS  PubMed  Google Scholar 

  75. Basecke J, Schwieger M, Griesinger F, Schiedlmeier B, Wulf G, Trumper L et al. AML1/ETO promotes the maintenance of early hematopoietic progenitors in NOD/SCID mice but does not abrogate their lineage specific differentiation. Leuk Lymphoma 2005; 46: 265–272.

    PubMed  Google Scholar 

  76. Chung KY, Morrone G, Schuringa JJ, Wong B, Dorn DC, Moore MA . Enforced expression of an Flt3 internal tandem duplication in human CD34+ cells confers properties of self-renewal and enhanced erythropoiesis. Blood 2005; 105: 77–84.

    CAS  PubMed  Google Scholar 

  77. Vercauteren SM, Sutherland HJ . Constitutively active Notch4 promotes early human hematopoietic progenitor cell maintenance while inhibiting differentiation and causes lymphoid abnormalities in vivo. Blood 2004; 104: 2315–2322.

    CAS  PubMed  Google Scholar 

  78. Wunderlich M, Krejci O, Wei J, Mulloy JC . Human CD34+ cells expressing the inv(16) fusion protein exhibit a myelomonocytic phenotype with greatly enhanced proliferative ability. Blood 2006; 108: 1690–1697.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kennedy JA, Barabé F, Patterson BJ, Bayani J, Squire JA, Barber DL et al. Expression of TEL-JAK2 in primary human hematopoietic cells drives erythropoietin-independent erythropoiesis and induces myelofibrosis in vivo. Proc Natl Acad Sci USA 2006; 103: 16930–16935.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chung KY, Morrone G, Schuringa JJ, Plasilova M, Shieh JH, Zhang Y et al. Enforced expression of NUP98-HOXA9 in human CD34(+) cells enhances stem cell proliferation. Cancer Res 2006; 66: 11781–11791.

    CAS  PubMed  Google Scholar 

  81. Takeda A, Goolsby C, Yaseen NR . NUP98-HOXA9 induces long-term proliferation and blocks differentiation of primary human CD34+ hematopoietic cells. Cancer Res 2006; 66: 6628–6637.

    CAS  PubMed  Google Scholar 

  82. Pike-Overzet K, de Ridder D, Weerkamp F, Baert MR, Verstegen MM, Brugman MH et al. Ectopic retroviral expression of LMO2, but not IL2Rgamma, blocks human T-cell development from CD34+ cells: implications for leukemogenesis in gene therapy. Leukemia 2007; 21: 754–763.

    CAS  PubMed  Google Scholar 

  83. Moreno-Miralles I, Pan L, Keates-Baleeiro J, Durst-Goodwin K, Yang C, Kim HG et al. The inv(16) cooperates with ARF haploinsufficiency to induce acute myeloid leukemia. J Biol Chem 2005; 280: 40097–40103.

    CAS  PubMed  Google Scholar 

  84. Kuo YH, Landrette SF, Heilman SA, Perrat PN, Garrett L, Liu PP et al. Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell 2006; 9: 57–68.

    CAS  PubMed  Google Scholar 

  85. Wierenga AT, Schepers H, Moore MA, Vellenga E, Schuringa JJ . STAT5-induced self-renewal and impaired myelopoiesis of human hematopoietic stem/progenitor cells involves down-modulation of C/EBPalpha. Blood 2006; 107: 4326–4333.

    CAS  PubMed  Google Scholar 

  86. Kamel-Reid S, Dick JE . Engraftment of immune-deficient mice with human hematopoietic stem cells. Science 1988; 242: 1706–1709.

    CAS  PubMed  Google Scholar 

  87. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE . Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 1992; 255: 1137–1141.

    CAS  PubMed  Google Scholar 

  88. Vormoor J, Lapidot T, Pflumio F, Risdon G, Patterson B, Broxmeyer HE et al. Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice. Blood 1994; 83: 2489–2497.

    CAS  PubMed  Google Scholar 

  89. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE . Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci USA 1997; 94: 5320–5325.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 1995; 154: 180–191.

    CAS  PubMed  Google Scholar 

  91. Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 1996; 2: 1329–1337.

    CAS  PubMed  Google Scholar 

  92. Yahata T, Ando K, Sato T, Miyatake H, Nakamura Y, Muguruma Y et al. A highly sensitive strategy for SCID-repopulating cell assay by direct injection of primitive human hematopoietic cells into NOD/SCID mice bone marrow. Blood 2003; 101: 2905–2913.

    CAS  PubMed  Google Scholar 

  93. Mazurier F, Doedens M, Gan OI, Dick JE . Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med 2003; 9: 959–963.

    CAS  PubMed  Google Scholar 

  94. McKenzie JL, Gan OI, Doedens M, Dick JE . Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood 2005; 106: 1259–1261.

    CAS  PubMed  Google Scholar 

  95. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 2004; 304: 104–107.

    CAS  PubMed  Google Scholar 

  96. Kamel-Reid S, Letarte M, Sirard C, Doedens M, Grunberger T, Fulop G et al. A model of human acute lymphoblastic leukemia in immune-deficient SCID mice. Science 1989; 246: 1597–1600.

    CAS  PubMed  Google Scholar 

  97. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    CAS  PubMed  Google Scholar 

  98. Uckun FM, Waurzyniak BJ, Sather HN, Sensel MG, Chelstrom L, Nachman J et al. Prognostic significance of T-lineage leukemic cell growth in SCID mice: a Children's Cancer Group study. Leuk Lymphoma 1999; 32: 475–487.

    CAS  PubMed  Google Scholar 

  99. Pearce DJ, Taussig D, Zibara K, Smith LL, Ridler CM, Preudhomme C et al. AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood 2006; 107: 1166–1173.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lumkul R, Gorin NC, Malehorn MT, Hoehn GT, Zheng R, Baldwin B et al. Human AML cells in NOD/SCID mice: engraftment potential and gene expression. Leukemia 2002; 16: 1818–1826.

    CAS  PubMed  Google Scholar 

  101. Charrad RS, Li Y, Delpech B, Balitrand N, Clay D, Jasmin C et al. Ligation of the CD44 adhesion molecule reverses blockage of differentiation in human acute myeloid leukemia. Nat Med 1999; 5: 669–676.

    CAS  PubMed  Google Scholar 

  102. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE . Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12: 1167–1174.

    PubMed  Google Scholar 

  103. Tavor S, Petit I, Porozov S, Avigdor A, Dar A, Leider-Trejo L et al. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res 2004; 64: 2817–2824.

    CAS  PubMed  Google Scholar 

  104. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    CAS  PubMed  Google Scholar 

  105. Ailles LE, Gerhard B, Kawagoe H, Hogge DE . Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood 1999; 94: 1761–1772.

    CAS  PubMed  Google Scholar 

  106. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 2007; 25: 1315–1321.

    CAS  PubMed  Google Scholar 

  107. Cox CV, Martin HM, Kearns PR, Virgo P, Evely RS, Blair A . Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia. Blood 2007; 109: 674–682.

    CAS  PubMed  Google Scholar 

  108. Castor A, Nilsson L, Astrand-Grundstrom I, Buitenhuis M, Ramirez C, Anderson K et al. Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 2005; 11: 630–637.

    CAS  PubMed  Google Scholar 

  109. Kong Y, Yoshida S, Saito Y, Doi T, Nagatoshi Y, Fukata M et al. CD34+CD38+CD19+ as well as CD34+CD38-CD19+ cells are leukemia-initiating cells with self-renewal capacity in human B-precursor ALL. Leukemia 2008; 22: 1207–1213.

    CAS  PubMed  Google Scholar 

  110. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A . Tumor growth need not be driven by rare cancer stem cells. Science 2007; 317: 337.

    CAS  PubMed  Google Scholar 

  111. Kennedy JA, Barabé F, Poeppl AG, Wang JC, Dick JE . Comment on ‘Tumor growth need not be driven by rare cancer stem cells’. Science 2007; 318: 1722.

    CAS  PubMed  Google Scholar 

  112. Chalandon Y, Jiang X, Christ O, Loutet S, Thanopoulou E, Eaves A et al. BCR-ABL-transduced human cord blood cells produce abnormal populations in immunodeficient mice. Leukemia 2005; 19: 442–448.

    CAS  PubMed  Google Scholar 

  113. Reynaud D, Ravet E, Titeux M, Mazurier F, Renia L, Dubart-Kupperschmitt A et al. SCL/TAL1 expression level regulates human hematopoietic stem cell self-renewal and engraftment. Blood 2005; 106: 2318–2328.

    CAS  PubMed  Google Scholar 

  114. Hong D, Gupta R, Ancliff P, Atzberger A, Brown J, Soneji S et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 2008; 319: 336–339.

    CAS  PubMed  Google Scholar 

  115. Geron I, Abrahamsson AE, Barroga CF, Kavalerchik E, Gotlib J, Hood JD et al. Selective inhibition of JAK2-driven erythroid differentiation of polycythemia vera progenitors. Cancer Cell 2008; 13: 321–330.

    CAS  PubMed  Google Scholar 

  116. Levine RL, Gilliland DG . JAK-2 mutations and their relevance to myeloproliferative disease. Curr Opin Hematol 2007; 14: 43–47.

    CAS  PubMed  Google Scholar 

  117. Daser A, Rabbitts TH . The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin Cancer Biol 2005; 15: 175–188.

    CAS  PubMed  Google Scholar 

  118. Greaves MF, Maia AT, Wiemels JL, Ford AM . Leukemia in twins: lessons in natural history. Blood 2003; 102: 2321–2333.

    CAS  PubMed  Google Scholar 

  119. Guenechea G, Gan OI, Dorrell C, Dick JE . Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat Immunol 2001; 2: 75–82.

    CAS  PubMed  Google Scholar 

  120. Shultz LD, Ishikawa F, Greiner DL . Humanized mice in translational biomedical research. Nat Rev Immunol 2007; 7: 118–130.

    CAS  PubMed  Google Scholar 

  121. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002; 100: 3175–3182.

    CAS  PubMed  Google Scholar 

  122. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005; 174: 6477–6489.

    CAS  PubMed  Google Scholar 

  123. Yahata T, Ando K, Nakamura Y, Ueyama Y, Shimamura K, Tamaoki N et al. Functional human T lymphocyte development from cord blood CD34+ cells in nonobese diabetic/Shi-scid, IL-2 receptor gamma null mice. J Immunol 2002; 169: 204–209.

    CAS  PubMed  Google Scholar 

  124. Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood 2005; 106: 1565–1573.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Manz MG . Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity 2007; 26: 537–541.

    CAS  PubMed  Google Scholar 

  126. Rossi MI, Medina KL, Garrett K, Kolar G, Comp PC, Shultz LD et al. Relatively normal human lymphopoiesis but rapid turnover of newly formed B cells in transplanted nonobese diabetic/SCID mice. J Immunol 2001; 167: 3033–3042.

    CAS  PubMed  Google Scholar 

  127. Nicolini FE, Cashman JD, Hogge DE, Humphries RK, Eaves CJ . NOD/SCID mice engineered to express human IL-3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia 2004; 18: 341–347.

    CAS  PubMed  Google Scholar 

  128. Feuring-Buske M, Gerhard B, Cashman J, Humphries RK, Eaves CJ, Hogge DE . Improved engraftment of human acute myeloid leukemia progenitor cells in beta 2-microglobulin-deficient NOD/SCID mice and in NOD/SCID mice transgenic for human growth factors. Leukemia 2003; 17: 760–763.

    CAS  PubMed  Google Scholar 

  129. Wei J, Wunderlich, M, Fox C, DiMartino JF, Mulloy JC . Environmental factors determine lineage fate in a human model of MLL–AF9 leukemia. Blood 2007; 118: p989A (abstract 3374).

    Google Scholar 

  130. Muguruma Y, Yahata T, Miyatake H, Sato T, Uno T, Itoh J et al. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood 2006; 107: 1878–1887.

    CAS  PubMed  Google Scholar 

  131. Noort WA, Kruisselbrink AB, in’t Anker PS, Kruger M, van Bezooijen RL, de Paus RA et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 2002; 30: 870–878.

    PubMed  Google Scholar 

  132. in ‘t Anker PS, Noort WA, Kruisselbrink AB, Scherjon SA, Beekhuizen W, Willemze R et al. Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 2003; 31: 881–889.

    PubMed  Google Scholar 

  133. Angelopoulou M, Novelli E, Grove JE, Rinder HM, Civin C, Cheng L et al. Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp Hematol 2003; 31: 413–420.

    CAS  PubMed  Google Scholar 

  134. Lee ST, Maeng H, Chwae YJ, Oh DJ, Kim YM, Yang WI . Effect of mesenchymal stem cell transplantation on the engraftment of human hematopoietic stem cells and leukemic cells in mice model. Int J Hematol 2008; 87: 327–337.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institute of Health Research (CIHR) Clinician Scientist award (to FB), an MD/PhD studentship (to JAK) and grants from the CIHR and the Fonds de la recherche en santé du Québec (FRSQ). We thank Jean Wang, Sergei Doulatov and Faiyaz Notta for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Barabé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, J., Barabé, F. Investigating human leukemogenesis: from cell lines to in vivo models of human leukemia. Leukemia 22, 2029–2040 (2008). https://doi.org/10.1038/leu.2008.206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.206

Keywords

This article is cited by

Search

Quick links