Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Aberrant signal transduction pathways in myeloproliferative neoplasms

Abstract

The BCR-ABL-negative myeloproliferative neoplasms (MPNs), polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF), entered the spotlight in 2005 when the unique somatic acquired JAK2 V617F mutation was described in >95% of PV and in 50% of ET and PMF patients. For the very rare PV patients who do not harbor the JAK2 V617F mutation, exon 12 JAK2 mutants were discovered also to result in activated forms of JAK2. A minority of ET and PMF patients harbor mutations that constitutively activate the thrombopoietin receptor (TpoR). In bone marrow reconstitution models based on retroviral transduction, the phenotype induced by JAK2 V617F is less severe and different from the rapid fatal myelofibrosis induced by TpoR W515L. The reasons for these differences are unknown. Exactly by which mechanism(s) one acquired somatic mutation, JAK2 V617F, can promote three different diseases remains a mystery, although gene dosage and host genetic variation might have important functions. We review the recent progress made in deciphering signaling anomalies in PV, ET and PMF, with an emphasis on the relationship between JAK2 V617F and cytokine receptor signaling and on cross-talk with several other signaling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Tefferi A, Gangat N, Wolanskyj AP, Schwager S, Pardanani A, Lasho TL et al. 20+ Year without leukemic or fibrotic transformation in essential thrombocythemia or polycythemia vera: predictors at diagnosis. Eur J Haematol 2008; 80: 386–390.

    PubMed  Google Scholar 

  2. Damashek W . Some speculations on the myeloproliferative syndromes. Blood 1951; 6: 372–375.

    Google Scholar 

  3. Adamson JW . Analysis of haemopoiesis: the use of cell markers and in vitro culture techniques in studies of clonal haemopathies in man. Clin Haematol 1984; 13: 489–502.

    CAS  PubMed  Google Scholar 

  4. Prchal JF, Axelrad AA . Bone-marrow responses in polycythemia vera. N Engl J Med 1974; 290: 1382.

    CAS  PubMed  Google Scholar 

  5. Roder S, Steimle C, Meinhardt G, Pahl HL . STAT3 is constitutively active in some patients with polycythemia rubra vera. Exp Hematol 2001; 29: 694–702.

    CAS  PubMed  Google Scholar 

  6. Dai C, Chung IJ, Krantz SB . Increased erythropoiesis in polycythemia vera is associated with increased erythroid progenitor proliferation and increased phosphorylation of Akt/PKB. Exp Hematol 2005; 33: 152–158.

    CAS  PubMed  Google Scholar 

  7. Silva M, Richard C, Benito A, Sanz C, Olalla I, Fernandez-Luna JL . Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. N Engl J Med 1998; 338: 564–571.

    CAS  PubMed  Google Scholar 

  8. Dai CH, Krantz SB, Dessypris EN, Means Jr RT, Horn ST, Gilbert HS . Polycythemia vera. II. Hypersensitivity of bone marrow erythroid, granulocyte-macrophage, and megakaryocyte progenitor cells to interleukin-3 and granulocyte gmacrophage colony-stimulating factor. Blood 1992; 80: 891–899.

    CAS  PubMed  Google Scholar 

  9. Dai CH, Krantz SB, Green WF, Gilbert HS . Polycythaemia vera. III. Burst-forming units-erythroid (BFU-E) response to stem cell factor and c-kit receptor expression. Br J Haematol 1994; 86: 12–21.

    CAS  PubMed  Google Scholar 

  10. Correa PN, Eskinazi D, Axelrad AA . Circulating erythroid progenitors in polycythemia vera are hypersensitive to insulin-like growth factor-1 in vitro: studies in an improved serum-free medium. Blood 1994; 83: 99–112.

    CAS  PubMed  Google Scholar 

  11. Axelrad AA, Eskinazi D, Correa PN, Amato D . Hypersensitivity of circulating progenitor cells to megakaryocyte growth and development factor (PEG-rHu MGDF) in essential thrombocythemia. Blood 2000; 96: 3310–3321.

    CAS  PubMed  Google Scholar 

  12. Dai C, Krantz SB . Increased expression of the INK4a/ARF locus in polycythemia vera. Blood 2001; 97: 3424–3432.

    CAS  PubMed  Google Scholar 

  13. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    CAS  PubMed  Google Scholar 

  14. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  15. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    CAS  PubMed  Google Scholar 

  16. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005; 280: 22788–22792.

    CAS  PubMed  Google Scholar 

  18. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007; 356: 459–468.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3: e270.

    PubMed  PubMed Central  Google Scholar 

  20. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476.

    CAS  PubMed  Google Scholar 

  21. Staerk J, Lacout C, Smith SO, Vainchenker W, Constantinescu SN . An amphipathic motif at the transmembrane–cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. Blood 2006; 107: 1864–1871.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Campbell PJ, Scott LM, Buck G, Wheatley K, East CL, Marsden JT et al. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet 2005; 366: 1945–1953.

    CAS  PubMed  Google Scholar 

  23. Lacout C, Pisani DF, Tulliez M, Moreau Gachelin F, Vainchenker W, Villeval JL . JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 2006; 108: 1652–1660.

    CAS  PubMed  Google Scholar 

  24. Tiedt R, Hao-Shen H, Sobas MA, Looser R, Dirnhofer S, Schwaller J et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 2008; 111: 3931–3940.

    CAS  PubMed  Google Scholar 

  25. Scott LM, Scott MA, Campbell PJ, Green AR . Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood 2006; 108: 2435–2437.

    CAS  PubMed  Google Scholar 

  26. Dupont S, Masse A, James C, Teyssandier I, Lecluse Y, Larbret F et al. The JAK2 617V>F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood 2007; 110: 1013–1021.

    CAS  PubMed  Google Scholar 

  27. Pardanani A, Fridley BL, Lasho TL, Gilliland DG, Tefferi A . Host genetic variation contributes to phenotypic diversity in myeloproliferative disorders. Blood 2008; 111: 2785–2789.

    CAS  PubMed  Google Scholar 

  28. Jamieson CH, Gotlib J, Durocher JA, Chao MP, Mariappan MR, Lay M et al. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Natl Acad Sci USA 2006; 103: 6224–6229.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Delhommeau F, Dupont S, Tonetti C, Masse A, Godin I, Le Couedic JP et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood 2007; 109: 71–77.

    CAS  PubMed  Google Scholar 

  30. James C, Mazurier F, Dupont S, Chaligne R, Lamrissi-Garcia I, Tulliez M et al. The hematopoietic stem cell compartment of JAK2V617F positive myeloproliferative disorders is a reflection of disease heterogeneity. Blood 2008; e-pub ahead of print 8 July 2008; doi:10.1182/blood-2008-02-137877.

    CAS  PubMed  Google Scholar 

  31. Sieburg HB, Cho RH, Dykstra B, Uchida N, Eaves CJ, Muller-Sieburg CE . The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 2006; 107: 2311–2316.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pardanani A, Lasho TL, Schwager S, Finke C, Hussein K, Pruthi RK et al. JAK2V617F prevalence and allele burden in non-splanchnic venous thrombosis in the absence of overt myeloproliferative disorder. Leukemia 2007; 21: 1828–1829.

    CAS  PubMed  Google Scholar 

  33. Pardanani A, Lasho TL, Hussein K, Schwager SM, Finke CM, Pruthi RK et al. JAK2V617F mutation screening as part of the hypercoagulable work-up in the absence of splanchnic venous thrombosis or overt myeloproliferative neoplasm: assessment of value in a series of 664 consecutive patients. Mayo Clin Proc 2008; 83: 457–459.

    PubMed  Google Scholar 

  34. Kiladjian JJ, Cervantes F, Leebeek FW, Marzac C, Cassinat B, Chevret S et al. The impact of JAK2 and MPL mutations on diagnosis and prognosis of splanchnic vein thrombosis. A report on 241 cases. Blood 2008; 111: 4922–4929.

    CAS  PubMed  Google Scholar 

  35. Patel RK, Lea NC, Heneghan MA, Westwood NB, Milojkovic D, Thanigaikumar M et al. Prevalence of the activating JAK2 tyrosine kinase mutation V617F in the Budd–Chiari syndrome. Gastroenterology 2006; 130: 2031–2038.

    CAS  PubMed  Google Scholar 

  36. Leibundgut EO, Horn MP, Brunold C, Pfanner-Meyer B, Marti D, Hirsiger H et al. Hematopoietic and endothelial progenitor cell trafficking in patients with myeloproliferative diseases. Hematologica 2006; 91: 1467–1474.

    Google Scholar 

  37. Van Pelt K, Nollet F, Selleslag D, Knoops L, Constantinescu SN, Criel A et al. The JAK2V617F mutation can occur in a hematopoietic stem cell that exhibits no proliferative advantage: a case of human allogeneic transplantation. Blood 2008; 112: 921–922.

    CAS  PubMed  Google Scholar 

  38. Kralovics R, Teo SS, Li S, Theocharides A, Buser AS, Tichelli A et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 2006; 108: 1377–1380.

    CAS  PubMed  Google Scholar 

  39. Theocharides A, Boissinot M, Girodon F, Garand R, Teo SS, Lippert E et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood 2007; 110: 375–379.

    Article  CAS  PubMed  Google Scholar 

  40. Nussenzveig RH, Swierczek SI, Jelinek J, Gaikwad A, Liu E, Verstovsek S et al. Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol 2007; 35: 32–38.

    CAS  PubMed  Google Scholar 

  41. Lodish HF, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A et al. Molecular Cell Biology, Chapter 16 Cell Signaling II: Signaling Pathways that Control Gene Activity, 6th edn. WH Freeman and Company: New York, NY, 2007, pp 666–667.

    Google Scholar 

  42. Wilks AF, Harpur AG, Kurban RR, Ralph SJ, Zurcher G, Ziemiecki A . Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase. Mol Cell Biol 1991; 11: 2057–2065.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Girault JA, Labesse G, Mornon JP, Callebaut I . The N-termini of FAK and JAKs contain divergent band 4.1 domains. Trends Biochem Sci 1999; 24: 54–57.

    CAS  PubMed  Google Scholar 

  44. Huang LJ, Constantinescu SN, Lodish HF . The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol Cell 2001; 8: 1327–1338.

    CAS  PubMed  Google Scholar 

  45. Radtke S, Hermanns HM, Haan C, Schmitz-Van De Leur H, Gascan H, Heinrich PC et al. Novel role for Janus kinase 1 in the regulation of oncostatin M receptor surface expression. J Biol Chem 2002; 10: 10.

    Google Scholar 

  46. Ragimbeau J, Dondi E, Alcover A, Eid P, Uze G, Pellegrini S . The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J 2003; 22: 537–547.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Royer Y, Staerk J, Costuleanu M, Courtoy PJ, Constantinescu SN . Janus kinases affect thrombopoietin receptor cell surface localization and stability. J Biol Chem 2005; 280: 27251–27261.

    CAS  PubMed  Google Scholar 

  48. Yeh TC, Dondi E, Uze G, Pellegrini S . A dual role for the kinase-like domain of the tyrosine kinase Tyk2 in interferon-alpha signaling. Proc Natl Acad Sci USA 2000; 97: 8991–8996.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Saharinen P, Silvennoinen O . The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem 2002; 277: 47954–47963.

    CAS  PubMed  Google Scholar 

  50. Lindauer K, Loerting T, Liedl KR, Kroemer RT . Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. Protein Eng 2001; 14: 27–37.

    CAS  PubMed  Google Scholar 

  51. Staerk J, Kallin A, Demoulin J-B, Vainchenker W, Constantinescu SN . JAK1 and Tyk2 activation by the homologous polycythemia vera JAK2 V617F mutation: cross-talk with IGF1 receptor. J Biol Chem 2005; 280: 41893–41899.

    CAS  PubMed  Google Scholar 

  52. Jeong EG, Kim MS, Nam HK, Min CK, Lee S, Chung YJ et al. Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers. Clin Cancer Res 2008; 14: 3716–3721.

    CAS  PubMed  Google Scholar 

  53. Flex E, Petrangeli V, Stella L, Chiaretti S, Hornakova T, Knoops L et al. Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J Exp Med 2008; 205: 751–758.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kohlhuber F, Rogers NC, Watling D, Feng J, Guschin D, Briscoe J et al. A JAK1/JAK2 chimera can sustain alpha and gamma interferon responses. Mol Cell Biol 1997; 17: 695–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Li Z, Xu M, Xing S, Ho WT, Ishii T, Li Q et al. Erlotinib effectively inhibits JAK2V617F activity and polycythemia vera cell growth. J Biol Chem 2007; 282: 3428–3432.

    CAS  PubMed  Google Scholar 

  56. Miura O, Cleveland JL, Ihle JN . Inactivation of erythropoietin receptor function by point mutations in a region having homology with other cytokine receptors. Mol Cell Biol 1993; 13: 1788–1795.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wernig G, Gonneville JR, Crowley BJ, Rodrigues MS, Reddy MM, Hudon HE et al. The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes. Blood 2008; 111: 3751–3759.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Behrmann I, Smyczek T, Heinrich PC, Schmitz-Van de Leur H, Komyod W, Giese B et al. Janus kinase (Jak) subcellular localization revisited: the exclusive membrane localization of endogenous Janus kinase 1 by cytokine receptor interaction uncovers the Jak.receptor complex to be equivalent to a receptor tyrosine kinase. J Biol Chem 2004; 279: 35486–35493.

    CAS  PubMed  Google Scholar 

  59. Funakoshi-Tago M, Pelletier S, Moritake H, Parganas E, Ihle JN . Jak2 FERM domain interaction with the erythropoietin receptor regulates Jak2 kinase activity. Mol Cell Biol 2008; 28: 1792–1801.

    CAS  PubMed  Google Scholar 

  60. Lu X, Huang LJ, Lodish HF . Dimerization by a cytokine receptor is necessary for constitutive activation of JAK2V617F. J Biol Chem 2008; 283: 5258–5266.

    CAS  PubMed  Google Scholar 

  61. Saharinen P, Takaluoma K, Silvennoinen O . Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol Cell Biol 2000; 20: 3387–3395.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Witthuhn BA, Quelle FW, Silvennoinen O, Yi T, Tang B, Miura O et al. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 1993; 74: 227–236.

    CAS  PubMed  Google Scholar 

  63. Tortolani PJ, Johnston JA, Bacon CM, McVicar DW, Shimosaka A, Linnekin D et al. Thrombopoietin induces tyrosine phosphorylation and activation of the Janus kinase, JAK2. Blood 1995; 85: 3444–3451.

    CAS  PubMed  Google Scholar 

  64. Drachman JG, Millett KM, Kaushansky K . Thrombopoietin signal transduction requires functional JAK2, not TYK2. J Biol Chem 1999; 274: 13480–13484.

    CAS  PubMed  Google Scholar 

  65. Shimoda K, Feng J, Murakami H, Nagata S, Watling D, Rogers NC et al. Jak1 plays an essential role for receptor phosphorylation and Stat activation in response to granulocyte colony-stimulating factor. Blood 1997; 90: 597–604.

    CAS  PubMed  Google Scholar 

  66. Touw IP, van de Geijn GJ . Granulocyte colony-stimulating factor and its receptor in normal myeloid cell development, leukemia and related blood cell disorders. Front Biosci 2007; 12: 800–815.

    CAS  PubMed  Google Scholar 

  67. Watowich SS, Wu H, Socolovsky M, Klingmuller U, Constantinescu SN, Lodish HF . Cytokine receptor signal transduction and the control of hematopoietic cell development. Annu Rev Cell Dev Biol 1996; 12: 91–128.

    CAS  PubMed  Google Scholar 

  68. Constantinescu SN, Keren T, Socolovsky M, Nam H, Henis YI, Lodish HF . Ligand-independent oligomerization of cell-surface erythropoietin receptor is mediated by the transmembrane domain. Proc Natl Acad Sci USA 2001; 98: 4379–4384.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Constantinescu SN, Huang LJ, Nam H, Lodish HF . The erythropoietin receptor cytosolic juxtamembrane domain contains an essential, precisely oriented, hydrophobic motif. Mol Cell 2001; 7: 377–385.

    CAS  PubMed  Google Scholar 

  70. Seubert N, Royer Y, Staerk J, Kubatzky KF, Moucadel V, Krishnakumar S et al. Active and inactive orientations of the transmembrane and cytosolic domains of the erythropoietin receptor dimer. Mol Cell 2003; 12: 1239–1250.

    CAS  PubMed  Google Scholar 

  71. Lu X, Levine R, Tong W, Wernig G, Pikman Y, Zarnegar S et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci USA 2005; 102: 18962–18967.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ihle JN, Gilliland DG . Jak2: normal function and role in hematopoietic disorders. Curr Opin Genet Dev 2007; 17: 8–14.

    CAS  PubMed  Google Scholar 

  73. Kirito K, Nakajima K, Watanabe T, Uchida M, Tanaka M, Ozawa K et al. Identification of the human erythropoietin receptor region required for Stat1 and Stat3 activation. Blood 2002; 99: 102–110.

    CAS  PubMed  Google Scholar 

  74. Gobert S, Chretien S, Gouilleux F, Muller O, Pallard C, Dusanter-Fourt I et al. Identification of tyrosine residues within the intracellular domain of the erythropoietin receptor crucial for STAT5 activation. EMBO J 1996; 15: 2434–2441.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Klingmuller U, Bergelson S, Hsiao JG, Lodish HF . Multiple tyrosine residues in the cytosolic domain of the erythropoietin receptor promote activation of STAT5. Proc Natl Acad Sci USA 1996; 93: 8324–8328.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF . Fetal anemia and apoptosis of red cell progenitors in Stat5a−/−5b−/− mice: a direct role for Stat5 in Bcl-X(L) induction. Cell 1999; 98: 181–191.

    CAS  PubMed  Google Scholar 

  77. Klingmuller U, Wu H, Hsiao JG, Toker A, Duckworth BC, Cantley LC et al. Identification of a novel pathway important for proliferation and differentiation of primary erythroid progenitors. Proc Natl Acad Sci USA 1997; 94: 3016–3021.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Damen JE, Cutler RL, Jiao H, Yi T, Krystal G . Phosphorylation of tyrosine 503 in the erythropoietin receptor (EpR) is essential for binding the P85 subunit of phosphatidylinositol (PI) 3-kinase and for EpR-associated PI 3-kinase activity. J Biol Chem 1995; 270: 23402–23408.

    CAS  PubMed  Google Scholar 

  79. Bao H, Jacobs-Helber SM, Lawson AE, Penta K, Wickrema A, Sawyer ST . Protein kinase B (c-Akt), phosphatidylinositol 3-kinase, and STAT5 are activated by erythropoietin (EPO) in HCD57 erythroid cells but are constitutively active in an EPO-independent, apoptosis-resistant subclone (HCD57-SREI cells). Blood 1999; 93: 3757–3773.

    CAS  PubMed  Google Scholar 

  80. Kashii Y, Uchida M, Kirito K, Tanaka M, Nishijima K, Toshima M et al. A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase–Akt activation pathway in erythropoietin signal transduction. Blood 2000; 96: 941–949.

    CAS  PubMed  Google Scholar 

  81. Zhao W, Kitidis C, Fleming MD, Lodish HF, Ghaffari S . Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood 2006; 107: 907–915.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Butcher CM, Hahn U, To LB, Gecz J, Wilkins EJ, Scott HS et al. Two novel JAK2 exon 12 mutations in JAK2V617F-negative polycythaemia vera patients. Leukemia 2008; 22: 870–873.

    CAS  PubMed  Google Scholar 

  83. Miyakawa Y, Oda A, Druker BJ, Kato T, Miyazaki H, Handa M et al. Recombinant thrombopoietin induces rapid protein tyrosine phosphorylation of Janus kinase 2 and Shc in human blood platelets. Blood 1995; 86: 23–27.

    CAS  PubMed  Google Scholar 

  84. Sattler M, Durstin MA, Frank DA, Okuda K, Kaushansky K, Salgia R et al. The thrombopoietin receptor c-MPL activates JAK2 and TYK2 tyrosine kinases. Exp Hematol 1995; 23: 1040–1048.

    CAS  PubMed  Google Scholar 

  85. Miyakawa Y, Rojnuckarin P, Habib T, Kaushansky K . Thrombopoietin induces phosphoinositol 3-kinase activation through SHP2, Gab, and insulin receptor substrate proteins in BAF3 cells and primary murine megakaryocytes. J Biol Chem 2001; 276: 2494–2502.

    CAS  PubMed  Google Scholar 

  86. Drachman JG, Griffin JD, Kaushansky K . The c-Mpl ligand (thrombopoietin) stimulates tyrosine phosphorylation of Jak2, Shc, and c-Mpl. J Biol Chem 1995; 270: 4979–4982.

    CAS  PubMed  Google Scholar 

  87. Miyakawa Y, Oda A, Druker BJ, Miyazaki H, Handa M, Ohashi H et al. Thrombopoietin induces tyrosine phosphorylation of Stat3 and Stat5 in human blood platelets. Blood 1996; 87: 439–446.

    CAS  PubMed  Google Scholar 

  88. Drachman JG, Kaushansky K . Dissecting the thrombopoietin receptor: functional elements of the Mpl cytoplasmic domain. Proc Natl Acad Sci USA 1997; 94: 2350–2355.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Rouyez MC, Boucheron C, Gisselbrecht S, Dusanter-Fourt I, Porteu F . Control of thrombopoietin-induced megakaryocytic differentiation by the mitogen-activated protein kinase pathway. Mol Cell Biol 1997; 17: 4991–5000.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Filippi MD, Porteu F, Le Pesteur F, Schiavon V, Millot GA, Vainchenker W et al. Requirement for mitogen-activated protein kinase activation in the response of embryonic stem cell-derived hematopoietic cells to thrombopoietin in vitro. Blood 2002; 99: 1174–1182.

    CAS  PubMed  Google Scholar 

  91. Olthof SG, Fatrai S, Drayer AL, Tyl MR, Vellenga E, Schuringa JJ . Downregulation of STAT5 in CD34+ cells promotes megakaryocytic development while activation of STAT5 drives erythropoiesis. Stem Cells 2008; 26: 1732–1742.

    CAS  PubMed  Google Scholar 

  92. Cocault L, Bouscary D, Le Bousse Kerdiles C, Clay D, Picard F, Gisselbrecht S et al. Ectopic expression of murine TPO receptor (c-mpl) in mice is pathogenic and induces erythroblastic proliferation. Blood 1996; 88: 1656–1665.

    CAS  PubMed  Google Scholar 

  93. Tong W, Lodish HF . Lnk inhibits Tpo-mpl signaling and Tpo-mediated megakaryocytopoiesis. J Exp Med 2004; 200: 569–580.

    PubMed  PubMed Central  Google Scholar 

  94. Tong W, Zhang J, Lodish HF . Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood 2005; 105: 4604–4612.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Moliterno AR, Spivak JL . Posttranslational processing of the thrombopoietin receptor is impaired in polycythemia vera. Blood 1999; 94: 2555–2561.

    CAS  PubMed  Google Scholar 

  96. Moliterno AR, Williams DM, Rogers O, Spivak JL . Molecular mimicry in the chronic myeloproliferative disorders: reciprocity between quantitative JAK2 V617F and Mpl expression. Blood 2006; 108: 3913–3915.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Dahlen DD, Broudy VC, Drachman JG . Internalization of the thrombopoietin receptor is regulated by 2 cytoplasmic motifs. Blood 2003; 102: 102–108.

    CAS  PubMed  Google Scholar 

  98. Onishi M, Mui AL, Morikawa Y, Cho L, Kinoshita S, Nolan GP et al. Identification of an oncogenic form of the thrombopoietin receptor MPL using retrovirus-mediated gene transfer. Blood 1996; 88: 1399–1406.

    CAS  PubMed  Google Scholar 

  99. Ding J, Komatsu H, Wakita A, Kato-Uranishi M, Ito M, Satoh A et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood 2004; 103: 4198–4200.

    CAS  PubMed  Google Scholar 

  100. Malinge S, Ragu C, Della-Valle V, Pisani D, Constantinescu SN, Perez C et al. Activating mutations in human acute megakaryoblastic leukemia. Blood 2008.

  101. Bumm TG, Elsea C, Corbin AS, Loriaux M, Sherbenou D, Wood L et al. Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res 2006; 66: 11156–11165.

    CAS  PubMed  Google Scholar 

  102. Gangat N, Strand J, Li CY, Wu W, Pardanani A, Tefferi A . Leucocytosis in polycythaemia vera predicts both inferior survival and leukaemic transformation. Br J Haematol 2007; 138: 354–358.

    PubMed  Google Scholar 

  103. Kralovics R, Teo SS, Buser AS, Brutsche M, Tiedt R, Tichelli A et al. Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood 2005; 106: 3374–3376.

    CAS  PubMed  Google Scholar 

  104. Passamonti F, Rumi E, Pietra D, Della Porta MG, Boveri E, Pascutto C et al. Relation between JAK2 (V617F) mutation status, granulocyte activation, and constitutive mobilization of CD34+ cells into peripheral blood in myeloproliferative disorders. Blood 2006; 107: 3676–3682.

    CAS  PubMed  Google Scholar 

  105. Xu M, Bruno E, Chao J, Huang S, Finazzi G, Fruchtman SM et al. Constitutive mobilization of CD34+ cells into the peripheral blood in idiopathic myelofibrosis may be due to the action of a number of proteases. Blood 2005; 105: 4508–4515.

    CAS  PubMed  Google Scholar 

  106. Rosti V, Massa M, Vannucchi AM, Bergamaschi G, Campanelli R, Pecci A et al. The expression of CXCR4 is down-regulated on the CD34+ cells of patients with myelofibrosis with myeloid metaplasia. Blood Cells Mol Dis 2007; 38: 280–286.

    CAS  PubMed  Google Scholar 

  107. Migliaccio AR, Martelli F, Verrucci M, Migliaccio G, Vannucchi AM, Ni H et al. Altered SDF-1/CXCR4 axis in patients with primary myelofibrosis and in the Gata1 low mouse model of the disease. Exp Hematol 2008; 36: 158–171.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 2005; 201: 1307–1318.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Feng J, Witthuhn BA, Matsuda T, Kohlhuber F, Kerr IM, Ihle JN . Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol 1997; 17: 2497–2501.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Matsuda T, Feng J, Witthuhn BA, Sekine Y, Ihle JN . Determination of the transphosphorylation sites of Jak2 kinase. Biochem Biophys Res Commun 2004; 325: 586–594.

    CAS  PubMed  Google Scholar 

  111. Argetsinger LS, Kouadio JL, Steen H, Stensballe A, Jensen ON, Carter-Su C . Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity. Mol Cell Biol 2004; 24: 4955–4967.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Feener EP, Rosario F, Dunn SL, Stancheva Z, Myers Jr MG . Tyrosine phosphorylation of Jak2 in the JH2 domain inhibits cytokine signaling. Mol Cell Biol 2004; 24: 4968–4978.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Funakoshi-Tago M, Pelletier S, Matsuda T, Parganas E, Ihle JN . Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2. EMBO J 2006; 25: 4763–4772.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kurzer JH, Argetsinger LS, Zhou YJ, Kouadio JL, O’Shea JJ, Carter-Su C . Tyrosine 813 is a site of JAK2 autophosphorylation critical for activation of JAK2 by SH2-B beta. Mol Cell Biol 2004; 24: 4557–4570.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Nishi M, Werner ED, Oh BC, Frantz JD, Dhe-Paganon S, Hansen L et al. Kinase activation through dimerization by human SH2-B. Mol Cell Biol 2005; 25: 2607–2621.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Vainchenker W, Constantinescu SN . A unique activating mutation in JAK2 is at the origin of polycythemia vera and allows a new classification of myeloproliferative diseases. Hematology Am Soc Hematol Educ Program 2005; 2005: 195–200.

    Google Scholar 

  117. Mesa RA, Tefferi A, Lasho TS, Loegering D, McClure RF, Powell HL et al. Janus kinase 2 (V617F) mutation status, signal transducer and activator of transcription-3 phosphorylation and impaired neutrophil apoptosis in myelofibrosis with myeloid metaplasia. Leukemia 2006; 20: 1800–1808.

    CAS  PubMed  Google Scholar 

  118. Teofili L, Martini M, Cenci T, Petrucci G, Torti L, Storti S et al. Different STAT-3 and STAT-5 phosphorylation discriminates among Ph-negative chronic myeloproliferative diseases and is independent of the V617F JAK-2 mutation. Blood 2007; 110: 354–359.

    CAS  PubMed  Google Scholar 

  119. Nicholson SE, De Souza D, Fabri LJ, Corbin J, Willson TA, Zhang JG et al. Suppressor of cytokine signaling-3 preferentially binds to the SHP-2-binding site on the shared cytokine receptor subunit gp130. Proc Natl Acad Sci USA 2000; 97: 6493–6498.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Schmitz J, Weissenbach M, Haan S, Heinrich PC, Schaper F . SOCS3 exerts its inhibitory function on interleukin-6 signal transduction through the SHP2 recruitment site of gp130. J Biol Chem 2000; 275: 12848–12856.

    CAS  PubMed  Google Scholar 

  121. Jenkins BJ, Roberts AW, Najdovska M, Grail D, Ernst M . The threshold of gp130-dependent STAT3 signaling is critical for normal regulation of hematopoiesis. Blood 2005; 105: 3512–3520.

    CAS  PubMed  Google Scholar 

  122. Yoshimura A, Naka T, Kubo M . SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 2007; 7: 454–465.

    CAS  PubMed  Google Scholar 

  123. Hortner M, Nielsch U, Mayr LM, Heinrich PC, Haan S . A new high affinity binding site for suppressor of cytokine signaling-3 on the erythropoietin receptor. Eur J Biochem 2002; 269: 2516–2526.

    CAS  PubMed  Google Scholar 

  124. Hookham MB, Elliott J, Suessmuth Y, Staerk J, Ward AC, Vainchenker W et al. The myeloproliferative disorder-associated JAK2 V617F mutant escapes negative regulation by suppressor of cytokine signaling 3. Blood 2007; 109: 4924–4929.

    CAS  PubMed  Google Scholar 

  125. Cacalano NA, Sanden D, Johnston JA . Tyrosine-phosphorylated SOCS-3 inhibits STAT activation but binds to p120 RasGAP and activates Ras. Nat Cell Biol 2001; 3: 460–465.

    CAS  PubMed  Google Scholar 

  126. Dusa A, Staerk J, Elliott J, Pecquet C, Poirel HA, Johnston JA et al. Substitution of pseudokinase domain residue V617 by large non-polar amino acids causes activation of JAK2. J Biol Chem 2008; 283: 12941–12948.

    CAS  PubMed  Google Scholar 

  127. Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG . Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 2006; 107: 4274–4281.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Knoops L, Hornakova T, Royer Y, Constantinescu SN, Renauld JC . JAK kinases overexpression promotes in vitro cell transformation. Oncogene 2008; 27: 1511–1519.

    CAS  PubMed  Google Scholar 

  129. Ugo V, Marzac C, Teyssandier I, Larbret F, Lecluse Y, Debili N et al. Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp Hematol 2004; 32: 179–187.

    CAS  PubMed  Google Scholar 

  130. Pardanani A, Hood J, Lasho T, Levine RL, Martin MB, Noronha G et al. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia 2007; 21: 1658–1668.

    CAS  PubMed  Google Scholar 

  131. Wernig G, Kharas MG, Okabe R, Moore SA, Leeman DS, Cullen DE et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell 2008; 13: 311–320.

    CAS  PubMed  Google Scholar 

  132. Geron I, Abrahamsson AE, Barroga CF, Kavalerchik E, Gotlib J, Hood JD et al. Selective inhibition of JAK2-driven erythroid differentiation of polycythemia vera progenitors. Cancer Cell 2008; 13: 321–330.

    CAS  PubMed  Google Scholar 

  133. Weiss MJ, Orkin SH . GATA transcription factors: key regulators of hematopoiesis. Exp Hematol 1995; 23: 99–107.

    CAS  PubMed  Google Scholar 

  134. Cantor AB, Orkin SH . Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 2002; 21: 3368–3376.

    CAS  PubMed  Google Scholar 

  135. Mirza AM, Correa PN, Axelrad AA . Increased basal and induced tyrosine phosphorylation of the insulin-like growth factor I receptor beta subunit in circulating mononuclear cells of patients with polycythemia vera. Blood 1995; 86: 877–882.

    CAS  PubMed  Google Scholar 

  136. Jones AV, Silver RT, Waghorn K, Curtis C, Kreil S, Zoi K et al. Minimal molecular response in polycythemia vera patients treated with imatinib or interferon alpha. Blood 2006; 107: 3339–3341.

    CAS  PubMed  Google Scholar 

  137. Gaikwad A, Verstovsek S, Yoon D, Chang KT, Manshouri T, Nussenzveig R et al. Imatinib effect on growth and signal transduction in polycythemia vera. Exp Hematol 2007; 35: 931–938.

    CAS  PubMed  Google Scholar 

  138. Chin H, Arai A, Wakao H, Kamiyama R, Miyasaka N, Miura O . Lyn physically associates with the erythropoietin receptor and may play a role in activation of the Stat5 pathway. Blood 1998; 91: 3734–3745.

    CAS  PubMed  Google Scholar 

  139. Zaleskas VM, Krause DS, Lazarides K, Patel N, Hu Y, Li S et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS ONE 2006; 1: e18.

    PubMed  PubMed Central  Google Scholar 

  140. Zeuner A, Pedini F, Signore M, Ruscio G, Messina C, Tafuri A et al. Increased death receptor resistance and FLIPshort expression in polycythemia vera erythroid precursor cells. Blood 2006; 107: 3495–3502.

    CAS  PubMed  Google Scholar 

  141. Le Bousse-Kerdilès MC, Martyré MC . Involvement of the fibrogenic cytokines, TGF-beta and bFGF, in the pathogenesis of idiopathic myelofibrosis. Pathol Biol (Paris) 2001; 49: 153–157.

    Google Scholar 

  142. Villeval JL, Cohen-Solal K, Tulliez M, Giraudier S, Guichard J, Burstein SA et al. High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood 1997; 90: 4369–4383.

    CAS  PubMed  Google Scholar 

  143. Chagraoui H, Komura E, Tulliez M, Giraudier S, Vainchenker W, Wendling F . Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood 2002; 100: 3495–3503.

    CAS  PubMed  Google Scholar 

  144. Ciurea SO, Merchant D, Mahmud N, Ishii T, Zhao Y, Hu W et al. Pivotal contributions of megakaryocytes to the biology of idiopathic myelofibrosis. Blood 2007; 110: 986–993.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Jenkins BJ, Grail D, Nheu T, Najdovska M, Wang B, Waring P et al. Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-beta signaling. Nat Med 2005; 11: 845–852.

    CAS  PubMed  Google Scholar 

  146. Vannucchi AM, Bianchi L, Paoletti F, Pancrazzi A, Torre E, Nishikawa M et al. A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-beta1 in the development of myelofibrosis. Blood 2005; 105: 3493–3501.

    CAS  PubMed  Google Scholar 

  147. Shi S, Calhoun HC, Xia F, Li J, Le L, Li WX . JAK signaling globally counteracts heterochromatic gene silencing. Nat Genet 2006; 38: 1071–1076.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Muller P, Kuttenkeuler D, Gesellchen V, Zeidler MP, Boutros M . Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature 2005; 436: 871–875.

    PubMed  Google Scholar 

  149. Guerini V, Barbui V, Spinelli O, Salvi A, Dellacasa C, Carobbio A et al. The histone deacetylase inhibitor ITF2357 selectively targets cells bearing mutated JAK2(V617F). Leukemia 2008; 22: 740–747.

    CAS  PubMed  Google Scholar 

  150. Schuebel KE, Chen W, Cope L, Glockner SC, Suzuki H, Yi JM et al. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet 2007; 3: 1709–1723.

    CAS  PubMed  Google Scholar 

  151. Shi J, Zhao Y, Ishii T, Hu W, Sozer S, Zhang W et al. Effects of chromatin-modifying agents on CD34+ cells from patients with idiopathic myelofibrosis. Cancer Res 2007; 67: 6417–6424.

    CAS  PubMed  Google Scholar 

  152. Jelinek J, Li J, Mnjoyan Z, Issa JP, Prchal JT, Afshar-Kharghan V . Epigenetic control of PRV-1 expression on neutrophils. Exp Hematol 2007; 35: 1677–1683.

    CAS  PubMed  Google Scholar 

  153. Temerinac S, Klippel S, Strunck E, Roder S, Lubbert M, Lange W et al. Cloning of PRV-1, a novel member of the uPAR receptor superfamily, which is overexpressed in polycythemia rubra vera. Blood 2000; 95: 2569–2576.

    CAS  PubMed  Google Scholar 

  154. Jost E, do ON, Dahl E, Maintz CE, Jousten P, Habets L et al. Epigenetic alterations complement mutation of JAK2 tyrosine kinase in patients with BCR/ABL-negative myeloproliferative disorders. Leukemia 2007; 21: 505–510.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to William Vainchenker, Jean-Christophe Renauld, Laurent Knoops and Ross Levine for stimulating discussions. We thank the Fondation Salus Sanguinis, the Action de Recherche Concertée (ARC) MEXP31 of the Université Catholique de Louvain, the Fondation contre le cancer, the Atlantic Philanthropies, New York, and the de Duve Institute for generous support. JK is supported by the Haas-Teichen Postdoctoral Fellowship of the de Duve Institute. SNC is a Research Associate and recipient of a Mandat d’Impulsion of the Fonds National de la Recherche Scientifique (FNRS), Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S N Constantinescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kota, J., Caceres, N. & Constantinescu, S. Aberrant signal transduction pathways in myeloproliferative neoplasms. Leukemia 22, 1828–1840 (2008). https://doi.org/10.1038/leu.2008.236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.236

Keywords

This article is cited by

Search

Quick links