Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myelodysplasias

Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q− syndrome

Abstract

The presence of cytogenetic aberrations on mesenchymal stem cells (MSC) from myelodysplastic syndrome (MDS) patients is controversial. The aim of the study is to characterize bone marrow (BM) derived MSC from patients with MDS using: kinetic studies, immunophenotyping, fluorescent in situ hybridization (FISH) and genetic changes by array-based comparative genomic hybridization (array-CGH). In all 36 cases of untreated MDS were studied. MDS–MSC achieved confluence at a significantly slower rate than donor-MSC, and the antigenic expression of CD105 and CD104 was lower. Array-CGH studies showed DNA genomic changes that were proved not to be somatic. These results were confirmed by FISH. To confirm that genomic changes were also present in freshly obtained MSCs they were enriched by sorting BM cells with the following phenotype: CD45/CD73++/CD34/CD271++. They also showed genomic changes that were confirmed by FISH. To analyze the relationship of these aberrations with clinical–biological data an unsupervized hierarchical cluster analysis was performed, two clusters were identified: the first one included the 5q− syndrome patients, whereas the other incorporated other MDS. Our results show, for the first time that MSC from MDS display genomic aberrations, assessed by array-CGH and FISH, some of them specially linked to a particular MDS subtype, the 5q− syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Catenacci DV, Schiller GJ . Myelodysplasic syndromes: a comprehensive review. Blood Rev 2005; 19: 301–319.

    Article  CAS  PubMed  Google Scholar 

  2. List AF, Vardiman J, Issa JP, DeWitte TM . Myelodysplastic syndromes. Hematol Am Soc Hematol Educ Program 2004, 297–317.

    Article  Google Scholar 

  3. Fenaux P . Myelodysplastic syndromes: From pathogenesis and prognosis to treatment. Semin Hematol 2004; 41: 6–12.

    Article  CAS  PubMed  Google Scholar 

  4. Tauro S, Hepburn MD, Bowen DT, Pippard MJ . Assessment of stromal function, and its potential contribution to deregulation of hematopoiesis in the myelodysplastic syndromes. Haematologica 2001; 86: 1038–1045.

    CAS  PubMed  Google Scholar 

  5. Flores-Figueroa E, Gutierrez-Espindola G, Montesinos JJ, rana-Trejo RM, Mayani H . In vitro characterization of hematopoietic microenvironment cells from patients with myelodysplastic syndrome. Leuk Res 2002; 26: 677–686.

    Article  CAS  PubMed  Google Scholar 

  6. Deeg HJ . Marrow stroma in MDS: culprit or bystander? Leuk Res 2002; 26: 687–688.

    Article  PubMed  Google Scholar 

  7. Soenen-Cornu V, Tourino C, Bonnet ML, Guillier M, Flamant S, Kotb R et al. Mesenchymal cells generated from patients with myelodysplastic syndromes are devoid of chromosomal clonal markers and support short- and long-term hematopoiesis in vitro. Oncogene 2005; 24: 2441–2448.

    Article  CAS  PubMed  Google Scholar 

  8. Flores-Figueroa E, rana-Trejo RM, Gutierrez-Espindola G, Perez-Cabrera A, Mayani H . Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res 2005; 29: 215–224.

    Article  CAS  PubMed  Google Scholar 

  9. Blau O, Hofmann WK, Baldus CD, Thiel G, Serbent V, Schumann E et al. Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol 2007; 35: 221–229.

    Article  CAS  PubMed  Google Scholar 

  10. Campioni D, Moretti S, Ferrari L, Punturieri M, Castodi GL, Lanza F . Immunophenotypic heterogeneity of bone marrow-derived mesenchymal stromal cells from patients with hematologic disorders: correlation with bone marrow microenvironment. Haematologica 2006; 91: 364–368.

    PubMed  Google Scholar 

  11. Ramakrishnan A, Awaya N, Bryant E, Torok-Storb B . The stromal component of the marrow microenvironment is not derived from the malignant clone in MDS. Blood 2006; 108: 772–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vardiman JW, Harris NL, Brunning RD . The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002; 100: 2292–2302.

    Article  CAS  PubMed  Google Scholar 

  13. Minguell JJ, Erices A, Conget P . Mesenchymal stem cells. Exp Biol Med (Maywood) 2001; 226: 507–520.

    Article  CAS  Google Scholar 

  14. Villaron EM, Almeida J, Lopez-Holgado N, Alcoceba M, Sanchez-Abarca LI, Sanchez-Guijo FM et al. Mesenchymal stem cells are present in peripheral blood and can engraft after allogeneic hematopoietic stem cell transplantation. Haematologica 2004; 89: 1421–1427.

    PubMed  Google Scholar 

  15. Dominici M, Le Blanc K, Mueller I, Slapar-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315–317.

    Article  CAS  PubMed  Google Scholar 

  16. del Canizo MC, Fernandez ME, Lopez A, Vidriales B, Villaron E, Arroyo JL et al. Immunophenotypic analysis of myelodysplastic syndromes. Haematologica 2003; 88: 402–407.

    PubMed  Google Scholar 

  17. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  18. Conget PA, Minguell JJ . Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 1999; 181: 67–73.

    Article  CAS  PubMed  Google Scholar 

  19. Blanco B, Perez-Simon JA, Sanchez-Abarca LI, Carvajal-Vergara X, Mateos J, Vidriales B et al. Bortezomib induces selective depletion of alloreactive T lymphocytes and decreases the production of Th1 cytokines. Blood 2006; 107: 3575–3583.

    Article  CAS  PubMed  Google Scholar 

  20. Garcia-Montero AC, Jara-Acevedo M, Teodosio C, Sanchez ML, Nunez R, Prados A et al. KIT mutation in mast cells and other bone marrow hematopoietic cell lineages in systemic mast cell disorders: a prospective study of the Spanish Network on Mastocytosis (REMA) in a series of 113 patients. Blood 2006; 108: 2366–2372.

    Article  CAS  PubMed  Google Scholar 

  21. Buhring HJ, Battula VL, Treml S, Schewe B, Kanz L, Vogel W . Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci 2007; 1106: 262–271.

    Article  PubMed  Google Scholar 

  22. Carter NP, Fiegler H, Piper J . Comparative analysis of comparative genomic hybridization microarray technologies: report of a workshop sponsored by the Wellcome Trust. Cytometry 2002; 49: 43–48.

    Article  CAS  PubMed  Google Scholar 

  23. Fiegler H, Carr P, Douglas EJ, Burford DC, Hunt S, Scott CE et al. DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones. Genes Chromosomes Cancer 2003; 36: 361–374.

    Article  CAS  PubMed  Google Scholar 

  24. Herrero J, Al-Shahrour F, az-Uriarte R, Mateos A, Vaquerizas JM, Santoyo J et al. GEPAS: A web-based resource for microarray gene expression data analysis. Nucleic Acids Res 2003; 31: 3461–3467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eisen MB, Spellman PT, Brown PO, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863–14868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gonzalez MB, Hernandez JM, Garcia JL, Lumbreras E, Castellanos M, Hernandez JM et al. The value of fluorescence in situ hybridization for the detection of 11q in multiple myeloma. Haematologica 2004; 89: 1213–1218.

    CAS  PubMed  Google Scholar 

  28. Perez-Simon JA, Caballero D, Diez-Campelo M, Lopez-Pérez R, Mateos G, Canizo C et al. Chimerism and minimal residual disease monitoring after reduced intensity conditioning (RIC) allogeneic transplantation. Leukemia 2002; 16: 1423–1431.

    Article  CAS  PubMed  Google Scholar 

  29. Li H, Fan X, Houghton J . Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem 2007; 101: 805–815.

    Article  CAS  PubMed  Google Scholar 

  30. Hellstrom-Lindberg E, Willman C, Barrett AJ, Saunthararajah Y . Achievements in understanding and treatment of myelodysplastic syndromes. Hematol Am Soc Hematol Educ Program 2000, 110–132.

    Article  Google Scholar 

  31. Mufti GJ . Pathobiology, classification, and diagnosis of myelodysplastic syndrome. Best Pract Res Clin Haematol 2004; 17: 543–557.

    Article  PubMed  Google Scholar 

  32. Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 2008; 451: 335–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. List AF . New approaches to the treatment of myelodysplasia. Oncologist 2002; 7 (Suppl 1): 39–49.

    Article  PubMed  Google Scholar 

  34. Corey SJ, Minden MD, Barber DL, Kantarjian H, Wang JC, Schimmer AD . Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer 2007; 7: 118–129.

    Article  CAS  PubMed  Google Scholar 

  35. Cazzola M . Myelodysplastic syndrome with isolated 5q deletion (5q- syndrome). A clonal stem cell disorder characterized by defective ribosome biogenesis. Haematologica 2008; 93: 967–972.

    Article  CAS  PubMed  Google Scholar 

  36. Albini A, Sporn MB . The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 2007; 7: 139–147.

    Article  CAS  PubMed  Google Scholar 

  37. Ishiguro K, Yoshida T, Yagishita H, Numata Y, Okayasu T . Epithelial and stromal genetic instability contributes to genesis of colorectal adenomas. Gut 2006; 55: 695–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mueller MM, Fusenig NE . Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 2004; 4: 839–849.

    Article  CAS  PubMed  Google Scholar 

  39. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC . Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 2007; 7: 585–598.

    Article  CAS  PubMed  Google Scholar 

  40. Giagounidis AA, Haase S, Heinsch M, Gohring G, Schlegelberg B, Aul C . Lenalidomide in the context of complex karyotype or interrupted treatment: case reviews of del(5q)MDS patients with unexpected responses. Ann Hematol 2007; 86: 133–137.

    Article  PubMed  Google Scholar 

  41. Mufti G, List AF, Gore SD, Ho AY . Myelodysplastic syndrome. Hematol Am Soc Hematol Educ Program 2003, 176–199.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr JG Briñon for his assistance with the chondrocytic staining; Dr J Almeida for her assistance with the immunophenotypic studies and Irene Rodriguez and Sara González for their assistance with the array-CGH studies. This work was partially supported by JCyL Grants JA10 (Estudio de las células stem mesenquimales en los síndromes mielodisplásicos, interacción con los progenitors hematopoyéticos 2005–2006) and HUS02A07 (Células stem mesenquimales en los síndromes mielodisplásicos: papel en la patogenia de la enfermedad 2007–2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-C del Cañizo.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez-Villar, O., Garcia, J., Sanchez-Guijo, F. et al. Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q− syndrome. Leukemia 23, 664–672 (2009). https://doi.org/10.1038/leu.2008.361

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.361

Keywords

This article is cited by

Search

Quick links