Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Disorders

Characterization of BCR-ABL deletion mutants from patients with chronic myeloid leukemia

Abstract

The BCR-ABL oncogenic tyrosine kinase causes chronic myeloid leukemia and is the target for imatinib therapy. During imatinib treatment, cells are selected in some patients with BCR-ABL kinase domain mutations that render decreased drug sensitivity. In addition, some patients express deletion mutants of BCR-ABL, apparently due to missplicing. Most commonly these deletion mutants lack a significant portion of the kinase domain that includes the P-loop. We describe a screen for such mutations in patients with CML and demonstrate that they are not oncogenic and are catalytically inactive. We hypothesized that coexpressing BCR-ABL deletion mutants has a dominant-negative effect on the native form through heterocomplex formation. However, upon coexpression of native and deletion mutant BCR-ABL in Ba/F3 cells, growth factor independence is maintained and signaling is activated normally. Despite this, these cells have increased imatinib sensitivity compared to cells expressing only native BCR-ABL. Thus, it will be important to investigate the prognostic impact of coexpression of deletion mutants in CML patients during imatinib treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. von Bubnoff N, Manley PW, Mestan J, Sanger J, Peschel C, Duyster J . Bcr-Abl resistance screening predicts a limited spectrum of point mutations to be associated with clinical resistance to the Abl kinase inhibitor nilotinib (AMN107). Blood 2006; 108: 1328–1333.

    Article  CAS  PubMed  Google Scholar 

  2. Gruber FX, Hjorth-Hansen H, Mikkola I, Stenke L, Johansen T . A novel Bcr-Abl splice isoform is associated with the L248V mutation in CML patients with acquired resistance to imatinib. Leukemia 2006; 20: 2057–2060.

    Article  CAS  PubMed  Google Scholar 

  3. Khorashad JS, Lipton JH, Marin D, Milojkovic D, Cross NCP, Dibb N et al. Abnormally small BCR-ABL transcripts in CML patients before and during imatinib treatment. Blood 2006; 108: 611a (abstract [2153]).

    Google Scholar 

  4. Volpe G, Cignetti A, Panuzzo C, Kuka M, Vitaggio K, Brancaccio M et al. Alternative BCR/ABL splice variants in Philadelphia chromosome-positive leukemias result in novel tumor-specific fusion proteins that may represent potential targets for immunotherapy approaches. Cancer Res 2007; 67: 5300–5307.

    Article  CAS  PubMed  Google Scholar 

  5. McWhirter JR, Galasso DL, Wang JY . A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 1993; 13: 7587–7595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao X, Ghaffari S, Lodish H, Malashkevich VN, Kim PS . Structure of the Bcr-Abl oncoprotein oligomerization domain. Nat Struct Biol 2002; 9: 117–120.

    CAS  PubMed  Google Scholar 

  7. Press RD, Love Z, Tronnes AA, Yang R, Tran T, Mongoue-Tchokote S et al. BCR-ABL mRNA levels at and after the time of a complete cytogenetic response (CCR) predict the duration of CCR in imatinib mesylate-treated patients with CML. Blood 2006; 107: 4250–4256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Willis SG, Lange T, Demehri S, Otto S, Crossman L, Niederwieser D et al. High-sensitivity detection of BCR-ABL kinase domain mutations in imatinib-naive patients: correlation with clonal cytogenetic evolution but not response to therapy. Blood 2005; 106: 2128–2137.

    Article  CAS  PubMed  Google Scholar 

  9. Deininger MW, McGreevey L, Willis S, Bainbridge TM, Druker BJ, Heinrich MC . Detection of ABL kinase domain mutations with denaturing high-performance liquid chromatography. Leukemia 2004; 18: 864–871.

    Article  CAS  PubMed  Google Scholar 

  10. Barila D, Superti-Furga G . An intramolecular SH3-domain interaction regulates c-Abl activity. Nat Genet 1998; 18: 280–282.

    Article  CAS  PubMed  Google Scholar 

  11. La Rosee P, Corbin AS, Stoffregen EP, Deininger MW, Druker BJ . Activity of the Bcr-Abl kinase inhibitor PD180970 against clinically relevant Bcr-Abl isoforms that cause resistance to imatinib mesylate (Gleevec, STI571). Cancer Res 2002; 62: 7149–7153.

    CAS  PubMed  Google Scholar 

  12. Hantschel O, Nagar B, Guettler S, Kretzschmar J, Dorey K, Kuriyan J et al. A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 2003; 112: 845–857.

    Article  CAS  PubMed  Google Scholar 

  13. Pluk H, Dorey K, Superti-Furga G . Autoinhibition of c-Abl. Cell 2002; 108: 247–259.

    Article  CAS  PubMed  Google Scholar 

  14. O'Hare T, Pollock R, Stoffregen EP, Keats JA, Abdullah OM, Moseson EM et al. Inhibition of wild-type and mutant Bcr-Abl by AP23464, a potent ATP-based oncogenic protein kinase inhibitor: implications for CML. Blood 2004; 104: 2532–2539.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng J, Knighton DR, ten Eyck LF, Karlsson R, Xuong N, Taylor SS et al. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry 1993; 32: 2154–2161.

    Article  CAS  PubMed  Google Scholar 

  16. Hantschel O, Superti-Furga G . Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol Cell Biol 2004; 5: 33–44.

    Article  CAS  PubMed  Google Scholar 

  17. Klucher KM, Lopez DV, Daley GQ . Secondary mutation maintains the transformed state in BaF3 cells with inducible BCR/ABL expression. Blood 1998; 91: 3927–3934.

    CAS  PubMed  Google Scholar 

  18. Waller CF, Dennebaum G, Feldmann C, Lange W . Long-template DNA polymerase chain reaction for the detection of the bcr/abl translocation in patients with chronic myelogenous leukemia. Clin Cancer Res 1999; 5: 4146–4151.

    CAS  PubMed  Google Scholar 

  19. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J . Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 2000; 289: 1938–1942.

    Article  CAS  PubMed  Google Scholar 

  20. Nagar B, Hantschel O, Young MA, Scheffzek K, Veach D, Bornmann W et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 2003; 112: 859–871.

    Article  CAS  PubMed  Google Scholar 

  21. PyMol Homepage. http://pymol.sourceforge.net/.Accessed July 17, 2007.

Download references

Acknowledgements

Supported in part by NHLBI Grant HL082978-01 (MWD), Doris Duke Charitable Foundation (BJD) and the Leukemia and Lymphoma Society (BJD, MWD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M W Deininger.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherbenou, D., Hantschel, O., Turaga, L. et al. Characterization of BCR-ABL deletion mutants from patients with chronic myeloid leukemia. Leukemia 22, 1184–1190 (2008). https://doi.org/10.1038/leu.2008.65

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.65

Keywords

This article is cited by

Search

Quick links