Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional Control and Signal Transduction

Epigenetic plasticity of hTERT gene promoter determines retinoid capacity to repress telomerase in maturation-resistant acute promyelocytic leukemia cells

Abstract

The expression of hTERT gene, encoding the catalytic subunit of telomerase, is a feature of most cancer cells. Changes in the chromatin environment of its promoter and binding of transcriptional factors have been reported in differentiating cells when its transcription is repressed. However, it is not clear whether these changes are directly involved in this repression or only linked to differentiation. In a maturation-resistant acute promyelocytic leukemia (APL) cell line (NB4-LR1), we have previously identified a new pathway of retinoid-induced hTERT repression independent of differentiation. Using a variant of this cell line (NB4-LR1SFD), which resists to this repression, we show that although distinct patterns of histone modifications and transcription factor binding at the proximal domain of hTERT gene promoter could concur to modulate its expression, this region is not sufficient to the on/off switch of hTERT by retinoids. DNA methylation analysis of the hTERT promoter led to the identification of two distinct functional domains, a proximal one, fully unmethylated in both cell lines, and a distal one, significantly methylated in NB4-LR1SFD cells, whose methylation was further re-enforced by retinoid treatment. Interestingly, we showed that the binding to this distal domain of a known hTERT repressor, WT1, was defective only in NB4-LR1SFD cells. We propose that epigenetic modifications targeting this distal region could modulate the binding of hTERT repressors and account either for hTERT reactivation and resistance to retinoid-induced hTERT downregulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Blackburn EH . Telomerases. Annu Rev Biochem 1992; 61: 113–129.

    Article  CAS  Google Scholar 

  2. Nakamura TM, Cech TR . Reversing time: origin of telomerase. Cell 1998; 92: 587–590.

    Article  CAS  Google Scholar 

  3. de Lange T . Telomeres and senescence: ending the debate. Science 1998; 279: 334–335.

    Article  CAS  Google Scholar 

  4. Hahn WC . Role of telomeres and telomerase in the pathogenesis of human cancer. J Clin Oncol 2003; 21: 2034–2043.

    Article  CAS  Google Scholar 

  5. Pendino F, Tarkanyi I, Dudognon C, Hillion J, Lanotte M, Aradi J et al. Telomeres and telomerase: pharmacological targets for new anticancer strategies? Curr Cancer Drug Targets 2006; 6: 147–180.

    Article  CAS  Google Scholar 

  6. Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP et al. The RNA component of human telomerase. Science 1995; 269: 1236–1241.

    Article  CAS  Google Scholar 

  7. Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD et al. hEST2, the putative human telomerase catalytic subunit gene, is up- regulated in tumor cells and during immortalization. Cell 1997; 90: 785–795.

    Article  CAS  Google Scholar 

  8. Takakura M, Kyo S, Kanaya T, Hirano H, Takeda J, Yutsudo M et al. Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. Cancer Res 1999; 59: 551–557.

    CAS  Google Scholar 

  9. Cong YS, Wen J, Bacchetti S . The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter. Hum Mol Genet 1999; 8: 137–142.

    Article  CAS  Google Scholar 

  10. Horikawa I, Cable PL, Afshari C, Barrett JC . Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. Cancer Res 1999; 59: 826–830.

    CAS  Google Scholar 

  11. Greenberg RA, O'Hagan RC, Deng H, Xiao Q, Hann SR, Adams RR et al. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene 1999; 18: 1219–1226.

    Article  CAS  Google Scholar 

  12. Wang J, Xie LY, Allan S, Beach D, Hannon GJ . Myc activates telomerase. Genes Dev 1998; 12: 1769–1774.

    Article  CAS  Google Scholar 

  13. Oh S, Song YH, Yim J, Kim TK . Identification of Mad as a repressor of the human telomerase (hTERT) gene. Oncogene 2000; 19: 1485–1490.

    Article  CAS  Google Scholar 

  14. Wu KJ, Grandori C, Amacker M, Simon-Vermot N, Polack A, Lingner J et al. Direct activation of TERT transcription by c-MYC. Nat Genet 1999; 21: 220–224.

    Article  CAS  Google Scholar 

  15. James L, Eisenman RN . Myc and Mad bHLHZ domains possess identical DNA-binding specificities but only partially overlapping functions in vivo. Proc Natl Acad Sci USA 2002; 99: 10429–10434.

    Article  CAS  Google Scholar 

  16. Renaud S, Loukinov D, Bosman FT, Lobanenkov V, Benhattar J . CTCF binds the proximal exonic region of hTERT and inhibits its transcription. Nucleic Acids Res 2005; 33: 6850–6860.

    Article  CAS  Google Scholar 

  17. Renaud S, Loukinov D, Abdullaev Z, Guilleret I, Bosman FT, Lobanenkov V et al. Dual role of DNA methylation inside and outside of CTCF-binding regions in the transcriptional regulation of the telomerase hTERT gene. Nucleic Acids Res 2007; 35: 7372–7388.

    Article  CAS  Google Scholar 

  18. Takakura M, Kyo S, Inoue M, Wright WE, Shay JW . Function of AP-1 in transcription of the telomerase reverse transcriptase gene (TERT) in human and mouse cells. Mol Cell Biol 2005; 25: 8037–8043.

    Article  CAS  Google Scholar 

  19. Lin SY, Elledge SJ . Multiple tumor suppressor pathways negatively regulate telomerase. Cell 2003; 113: 881–889.

    Article  CAS  Google Scholar 

  20. Fujimoto K, Kyo S, Takakura M, Kanaya T, Kitagawa Y, Itoh H et al. Identification and characterization of negative regulatory elements of the human telomerase catalytic subunit (hTERT) gene promoter: possible role of MZF-2 in transcriptional repression of hTERT. Nucleic Acids Res 2000; 28: 2557–2562.

    Article  CAS  Google Scholar 

  21. Oh S, Song Y, Yim J, Kim TK . The Wilms' tumor 1 tumor suppressor gene represses transcription of the human telomerase reverse transcriptase gene. J Biol Chem 1999; 274: 37473–37478.

    Article  CAS  Google Scholar 

  22. Wang S, Zhu J . Evidence for a relief of repression mechanism for activation of the human telomerase reverse transcriptase promoter. J Biol Chem 2003; 278: 18842–18850.

    Article  CAS  Google Scholar 

  23. Wang S, Zhu J . The hTERT gene is embedded in a nuclease-resistant chromatin domain. J Biol Chem 2004; 279: 55401–55410.

    Article  CAS  Google Scholar 

  24. Wang S, Zhao Y, Zhu J . Differential repression of human and mouse TERT genes during cell differentiation. Nucleic Acids Res 2009; 37: 2618–2629.

    Article  CAS  Google Scholar 

  25. Devereux TR, Horikawa I, Anna CH, Annab LA, Afshari CA, Barrett JC . DNA methylation analysis of the promoter region of the human telomerase reverse transcriptase (hTERT) gene. Cancer Res 1999; 59: 6087–6090.

    CAS  Google Scholar 

  26. Dessain SK, Yu H, Reddel RR, Beijersbergen RL, Weinberg RA . Methylation of the human telomerase gene CpG island. Cancer Res 2000; 60: 537–541.

    CAS  Google Scholar 

  27. Nomoto K, Maekawa M, Sugano K, Ushiama M, Fukayama N, Fujita S et al. Methylation status and expression of human telomerase reverse transcriptase mRNA in relation to hypermethylation of the p16 gene in colorectal cancers as analyzed by bisulfite PCR-SSCP. Jpn J Clin Oncol 2002; 32: 3–8.

    Article  Google Scholar 

  28. Guilleret I, Yan P, Grange F, Braunschweig R, Bosman FT, Benhattar J . Hypermethylation of the human telomerase catalytic subunit (hTERT) gene correlates with telomerase activity. Int J Cancer 2002; 101: 335–341.

    Article  CAS  Google Scholar 

  29. Guilleret I, Benhattar J . Demethylation of the human telomerase catalytic subunit (hTERT) gene promoter reduced hTERT expression and telomerase activity and shortened telomeres. Exp Cell Res 2003; 289: 326–334.

    Article  CAS  Google Scholar 

  30. Guilleret I, Benhattar J . Unusual distribution of DNA methylation within the hTERT CpG island in tissues and cell lines. Biochem Biophys Res Commun 2004; 325: 1037–1043.

    Article  CAS  Google Scholar 

  31. Zinn RL, Pruitt K, Eguchi S, Baylin SB, Herman JG . hTERT is expressed in cancer cell lines despite promoter DNA methylation by preservation of unmethylated DNA and active chromatin around the transcription start site. Cancer Res 2007; 67: 194–201.

    Article  CAS  Google Scholar 

  32. Xu D, Popov N, Hou M, Wang Q, Bjorkholm M, Gruber A et al. Switch from Myc/Max to Mad1/Max binding and decrease in histone acetylation at the telomerase reverse transcriptase promoter during differentiation of HL60 cells. Proc Natl Acad Sci USA 2001; 98: 3826–3831.

    Article  CAS  Google Scholar 

  33. Pendino F, Flexor M, Delhommeau F, Buet D, Lanotte M, Ségal-Bendirdjian E . Retinoids down-regulate telomerase and telomere length in a pathway distinct from leukemia cell differentiation. Proc Natl Acad Sci USA 2001; 98: 6662–6667.

    Article  CAS  Google Scholar 

  34. Liu L, Saldanha SN, Pate MS, Andrews LG, Tollefsbol TO . Epigenetic regulation of human telomerase reverse transcriptase promoter activity during cellular differentiation. Genes Chromosomes Cancer 2004; 41: 26–37.

    Article  CAS  Google Scholar 

  35. Love WK, Deangelis JT, Berletch JB, Phipps SM, Andrews LG, Brouillette WJ et al. The novel retinoid, 9cUAB30, inhibits telomerase and induces apoptosis in HL60 cells. Transl Oncol 2008; 1: 148–152.

    Article  Google Scholar 

  36. Drissi R, Zindy F, Roussel MF, Cleveland JL . c-Myc-mediated regulation of telomerase activity is disabled in immortalized cells. J Biol Chem 2001; 276: 29994–30001.

    Article  CAS  Google Scholar 

  37. Pendino F, Sahraoui T, Lanotte M, Ségal-Bendirdjian E . A novel mechanism of retinoic acid resistance in acute promyelocytic leukemia cells through a defective pathway in telomerase regulation. Leukemia 2002; 16: 826–832.

    Article  CAS  Google Scholar 

  38. Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F, Berger R . NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 1991; 77: 1080–1086.

    CAS  Google Scholar 

  39. Duprez E, Ruchaud S, Houge G, Martin-Thouvenin V, Valensi F, Kastner P et al. A retinoid acid ‘resistant’ t(15;17) acute promyelocytic leukemia cell line: isolation, morphological, immunological, and molecular features. Leukemia 1992; 6: 1281–1287.

    CAS  Google Scholar 

  40. Pendino F, Dudognon C, Delhommeau F, Sahraoui T, Flexor M, Bennaceur-Griscelli A et al. Retinoic acid receptor alpha and retinoid-X receptor-specific agonists synergistically target telomerase expression and induce tumor cell death. Oncogene 2003; 22: 9142–9150.

    Article  CAS  Google Scholar 

  41. Ségal-Bendirdjian E, Jacquemin-Sablon A . Cisplatin resistance in a murine leukemia cell line is associated with a defective apoptotic process. Exp Cell Res 1995; 218: 201–212.

    Article  Google Scholar 

  42. Sandoval J, Rodriguez JL, Tur G, Serviddio G, Pereda J, Boukaba A et al. RNAPol-ChIP: a novel application of chromatin immunoprecipitation to the analysis of real-time gene transcription. Nucleic Acids Res 2004; 32: e88.

    Article  Google Scholar 

  43. de Thé H, Vivanco-Rulzo MM, Thiollais P, Stunnenberg H, Dejean A . Identification of a retinoic acid response element in the retinoic acid receptor b gene. Nature 1990; 343: 177–180.

    Article  Google Scholar 

  44. Gunes C, Lichtsteiner S, Vasserot AP, Englert C . Expression of the hTERT gene is regulated at the level of transcriptional initiation and repressed by Mad1. Cancer Res 2000; 60: 2116–2121.

    CAS  Google Scholar 

  45. Kyo S, Takakura M, Taira T, Kanaya T, Itoh H, Yutsudo M et al. Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acids Res 2000; 28: 669–677.

    Article  CAS  Google Scholar 

  46. Yang L, Han Y, Saurez SF, Minden MD . A tumor suppressor and oncogene: the WT1 story. Leukemia 2007; 21: 868–876.

    Article  CAS  Google Scholar 

  47. Sugita M, Tanaka N, Davidson S, Sekiya S, Varella-Garcia M, West J et al. Molecular definition of a small amplification domain within 3q26 in tumors of cervix, ovary, and lung. Cancer Genet Cytogenet 2000; 117: 9–18.

    Article  CAS  Google Scholar 

  48. Gu W, Chen Z, Hu S, Shen H, Qiu G, Cao X . Changes in expression of WT1 isoforms during induced differntiation of the NB4 cell line. Haematologica 2005; 90: 403–405.

    CAS  Google Scholar 

  49. Liu L, Berletch JB, Green JG, Pate MS, Andrews LG, Tollefsbol TO . Telomerase inhibition by retinoids precedes cytodifferentiation of leukemia cells and may contribute to terminal differentiation. Mol Cancer Ther 2004; 3: 1003–1009.

    CAS  Google Scholar 

  50. Qin T, Jelinek J, Si J, Shu J, Issa JP . Mechanisms of resistance to 5-aza-2′-deoxycytidine in human cancer cell lines. Blood 2009; 113: 659–667.

    Article  CAS  Google Scholar 

  51. Nabilsi NH, Broaddus RR, Loose DS . DNA methylation inhibits p53-mediated survivin repression. Oncogene 2009; 28: 2046–2050.

    Article  CAS  Google Scholar 

  52. Renaud S, Bosman FT, Benhattar J . Implication of the exon region in the regulation of the human telomerase reverse transcriptase gene promoter. Biochem Biophys Res Commun 2003; 300: 47–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Institut National de la Santé et de la Recherche Médicale, the Association pour la Recherche contre le Cancer (E S-B), the Fondation de France (E S-B), Cent pour Sang la Vie and Capucine (E S-B), the Société Française du Cancer, the Société Française d'Hématologie (IT) and Aleppo Pharmaceutical Industries (Alpha), Aleppo, Syria (AA). We thank Dr Sophie Bombard (UMR CNRS 8601) for her comments on the paper and Dr Michèle Goodhardt (INSERM U662) for her critical discussions and English editing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Ségal-Bendirdjian.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azouz, A., Wu, YL., Hillion, J. et al. Epigenetic plasticity of hTERT gene promoter determines retinoid capacity to repress telomerase in maturation-resistant acute promyelocytic leukemia cells. Leukemia 24, 613–622 (2010). https://doi.org/10.1038/leu.2009.283

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.283

Keywords

This article is cited by

Search

Quick links