Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

BAALC-associated gene expression profiles define IGFBP7 as a novel molecular marker in acute leukemia

Abstract

Over expression of BAALC (brain and acute leukemia, cytoplasmic) predicts an inferior outcome in acute myeloid leukemia (AML) and acute lymphoblastic leukemia patients. To identify BAALC-associated genes that give insights into its functional role in chemotherapy resistance, gene expression signatures differentiating high from low BAALC expressers were generated from normal CD34+ progenitors, T-acute lymphoblastic leukemia (T-ALL) and AML samples. The insulin-like growth factor binding protein 7 (IGFBP7) was one of the four genes (CD34, CD133, natriuretic peptide receptor C (NPR3), IGFBP7) coexpressed with BAALC and common to the three entities. In T-ALL, high IGFBP7-expression was associated with an immature phenotype of early T-ALL (P<0.001), expression of CD34 (P<0.001) and CD33 (P<0.001). Moreover, high IGFBP7-expression predicted primary therapy resistance (P=0.03) and inferior survival in T-ALL (P=0.03). In vitro studies revealed that IGFBP7 protein significantly inhibited the proliferation of leukemia cell lines (Jurkat cells: 42% reduction, P=0.002; KG1a cells: 65% reduction, P<0.001). In conclusion, IGFBP7 was identified as a BAALC coexpressed gene. Furthermore, high IGFBP7 was associated with stem cell features and treatment failure in T-ALL. In contrast to BAALC, which likely represents only a surrogate marker of treatment failure in acute leukemia, IGFBP7 regulates the proliferation of leukemic cells and might be involved in chemotherapy resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Scott EW, Simon MC, Anastasi J, Singh H . Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 1994; 265: 1573–1577.

    Article  CAS  PubMed  Google Scholar 

  2. Scheijen B, Griffin JD . Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. Oncogene 2002; 21: 3314–3333.

    Article  CAS  PubMed  Google Scholar 

  3. Orkin SH . Transcription factors and hematopoietic development. J Biol Chem 1995; 270: 4955–4958.

    Article  CAS  PubMed  Google Scholar 

  4. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  5. Tanner SM, Austin JL, Leone G, Rush LJ, Plass C, Heinonen K et al. BAALC, the human member of a novel mammalian neuroectoderm gene lineage, is implicated in hematopoiesis and acute leukemia. Proc Natl Acad Sci USA 2001; 98: 13901–13906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baldus CD, Tanner SM, Ruppert AS, Whitman SP, Archer KJ, Marcucci G et al. BAALC expression predicts clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics: a Cancer and Leukemia Group B Study. Blood 2003; 102: 1613–1618.

    Article  CAS  PubMed  Google Scholar 

  7. Bienz M, Ludwig M, Leibundgut EO, Mueller BU, Ratschiller D, Solenthaler M et al. Risk assessment in patients with acute myeloid leukemia and a normal karyotype. Clin Cancer Res 2005; 11: 1416–1424.

    Article  CAS  PubMed  Google Scholar 

  8. Baldus CD, Martus P, Burmeister T, Schwartz S, Gokbuget N, Bloomfield CD et al. Low ERG and BAALC expression identifies a new subgroup of adult acute T-lymphoblastic leukemia with a highly favorable outcome. J Clin Oncol 2007; 25: 3739–3745.

    Article  CAS  PubMed  Google Scholar 

  9. Langer C, Radmacher MD, Ruppert AS, Whitman SP, Paschka P, Mrozek K et al. High BAALC expression associates with other molecular prognostic markers, poor outcome, and a distinct gene-expression signature in cytogenetically normal patients younger than 60 years with acute myeloid leukemia: a Cancer and Leukemia Group B (CALGB) study. Blood 2008; 111: 5371–5379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuehnl A, Goekbuget N, Stroux A, Burmeister T, Neumann M, Heesch S et al. High BAALC expression predicts chemoresistance in adult B-precursor acute lymphoblastic leukemia. Blood 2010; 115: 3737–3744, blood-2009.

    Article  CAS  Google Scholar 

  11. Baldus CD, Tanner SM, Kusewitt DF, Liyanarachchi S, Choi C, Caligiuri MA et al. BAALC, a novel marker of human hematopoietic progenitor cells. Exp Hematol 2003; 31: 1051–1056.

    CAS  PubMed  Google Scholar 

  12. Gokbuget N, Raff R, Brugge-Mann M, Flohr T, Scheuring U, Pfeifer H et al. Risk/MRD adapted GMALL trials in adult ALL. Ann Hematol 2004; 83 (Suppl 1): S129–S131.

    PubMed  Google Scholar 

  13. Schwartz S, Rieder H, Schlager B, Burmeister T, Fischer L, Thiel E . Expression of the human homologue of rat NG2 in adult acute lymphoblastic leukemia: close association with MLL rearrangement and a CD10(−)/CD24(−)/CD65s(+)/CD15(+) B-cell phenotype. Leukemia 2003; 17: 1589–1595.

    Article  CAS  PubMed  Google Scholar 

  14. Matutes E, Morilla R, Farahat N, Carbonell F, Swansbury J, Dyer M et al. Definition of acute biphenotypic leukemia. Haematologica 1997; 82: 64–66.

    CAS  PubMed  Google Scholar 

  15. Komor M, Guller S, Baldus CD, de Vos S, Hoelzer D, Ottmann OG et al. Transcriptional profiling of human hematopoiesis during in vitro lineage-specific differentiation. Stem Cells 2005; 23: 1154–1169.

    Article  CAS  PubMed  Google Scholar 

  16. Haferlach T, Kohlmann A, Basso G, Bene MC, Chiaretti S, Downing JR et al. The clinical utility of microarray-based gene expression profiling in the diagnosis and sub-classification of leukemia: final report on 3252 cases from the international MILE study group. Ash Annual Meeting Abstracts 2008; 112: 753.

    Google Scholar 

  17. Mills KI, Kohlmann A, Williams PM, Wieczorek L, Liu WM, Li R et al. Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome. Blood 2009; 114: 1063–1072.

    Article  CAS  PubMed  Google Scholar 

  18. Dimri GP, Campisi J . Molecular and cell biology of replicative senescence. Cold Spring Harb Symp Quant Biol 1994; 59: 67–73.

    Article  CAS  PubMed  Google Scholar 

  19. Jaatinen T, Hemmoranta H, Hautaniemi S, Niemi J, Nicorici D, Laine J et al. Global gene expression profile of human cord blood-derived CD133+ cells. Stem Cells 2006; 24: 631–641.

    Article  CAS  PubMed  Google Scholar 

  20. Toren A, Bielorai B, Jacob-Hirsch J, Fisher T, Kreiser D, Moran O et al. CD133-positive hematopoietic stem cell ‘stemness’ genes contain many genes mutated or abnormally expressed in leukemia. Stem Cells 2005; 23: 1142–1153.

    Article  CAS  PubMed  Google Scholar 

  21. Vorwerk P, Wex H, Hohmann B, Oh Y, Rosenfeld RG, Mittler U . CTGF (IGFBP-rP2) is specifically expressed in malignant lymphoblasts of patients with acute lymphoblastic leukaemia (ALL). Br J Cancer 2000; 83: 756–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Doepfner KT, Spertini O, Arcaro A . Autocrine insulin-like growth factor-I signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/Akt pathway. Leukemia 2007; 21: 1921–1930.

    Article  CAS  PubMed  Google Scholar 

  23. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997; 89: 2079–2088.

    CAS  PubMed  Google Scholar 

  24. Mutaguchi K, Yasumoto H, Mita K, Matsubara A, Shiina H, Igawa M et al. Restoration of insulin-like growth factor binding protein-related protein 1 has a tumor-suppressive activity through induction of apoptosis in human prostate cancer. Cancer Res 2003; 63: 7717–7723.

    CAS  PubMed  Google Scholar 

  25. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR . Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 2008; 132: 363–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Civin CI, Trischmann T, Kadan NS, Davis J, Noga S, Cohen K et al. Highly purified CD34-positive cells reconstitute hematopoiesis. J Clin Oncol 1996; 14: 2224–2233.

    Article  CAS  PubMed  Google Scholar 

  27. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997; 90: 5002–5012.

    CAS  PubMed  Google Scholar 

  28. Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 1997; 90: 5013–5021.

    CAS  PubMed  Google Scholar 

  29. Potter LR, Abbey-Hosch S, Dickey DM . Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 2006; 27: 47–72.

    Article  CAS  PubMed  Google Scholar 

  30. Dawczynski K, Kauf E, Zintl F . Changes of serum growth factors (IGF-I,-II and IGFBP-2,-3) prior to and after stem cell transplantation in children with acute leukemia. Bone Marrow Transplant 2003; 32: 411–415.

    Article  CAS  PubMed  Google Scholar 

  31. Dawczynski K, Steinbach D, Wittig S, Pfaffendorf N, Kauf E, Zintl F . Expression of components of the IGF axis in childhood acute myelogenous leukemia. Pediatr Blood Cancer 2008; 50: 24–28.

    Article  PubMed  Google Scholar 

  32. Hwa V, Tomasini-Sprenger C, Bermejo AL, Rosenfeld RG, Plymate SR . Characterization of insulin-like growth factor-binding protein-related protein-1 in prostate cells. J Clin Endocrinol Metab 1998; 83: 4355–4362.

    CAS  PubMed  Google Scholar 

  33. Shimon I, Shpilberg O . The insulin-like growth factor system in regulation of normal and malignant hematopoiesis. Leuk Res 1995; 19: 233–240.

    Article  CAS  PubMed  Google Scholar 

  34. Shimon I, Shpilberg O . Insulin-like growth factors and hematologic malignancies. Ann Intern Med 1995; 123: 76.

    Article  CAS  PubMed  Google Scholar 

  35. LeRoith D, Baserga R, Helman L, Roberts Jr CT . Insulin-like growth factors and cancer. Ann Intern Med 1995; 122: 54–59.

    Article  CAS  PubMed  Google Scholar 

  36. Jones JI, Clemmons DR . Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 1995; 16: 3–34.

    CAS  PubMed  Google Scholar 

  37. Oh Y . IGFBPs and neoplastic models. New concepts for roles of IGFBPs in regulation of cancer cell growth. Endocrine 1997; 7: 111–113.

    Article  CAS  PubMed  Google Scholar 

  38. Hwa V, Oh Y, Rosenfeld RG . The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev 1999; 20: 761–787.

    CAS  PubMed  Google Scholar 

  39. Sprenger CC, Damon SE, Hwa V, Rosenfeld RG, Plymate SR . Insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) is a potential tumor suppressor protein for prostate cancer. Cancer Res 1999; 59: 2370–2375.

    CAS  PubMed  Google Scholar 

  40. Jiang W, Xiang C, Cazacu S, Brodie C, Mikkelsen T . Insulin-like growth factor binding protein 7 mediates glioma cell growth and migration. Neoplasia 2008; 10: 1335–1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Adachi Y, Itoh F, Yamamoto H, Arimura Y, Kikkawa-Okabe Y, Miyazaki K et al. Expression of angiomodulin (tumor-derived adhesion factor/MAC25) in invading tumor cells correlates with poor prognosis in human colorectal cancer. Int J Cancer 2001; 95: 216–222.

    Article  CAS  PubMed  Google Scholar 

  42. Burger AM, Zhang X, Li H, Ostrowski JL, Beatty B, Venanzoni M et al. Down-regulation of T1A12/MAC25, a novel insulin-like growth factor binding protein related gene, is associated with disease progression in breast carcinomas. Oncogene 1998; 16: 2459–2467.

    Article  CAS  PubMed  Google Scholar 

  43. How HK, Yeoh A, Quah TC, Oh Y, Rosenfeld RG, Lee KO . Insulin-like growth factor binding proteins (IGFBPs) and IGFBP-related protein 1-levels in cerebrospinal fluid of children with acute lymphoblastic leukemia. J Clin Endocrinol Metab 1999; 84: 1283–1287.

    CAS  PubMed  Google Scholar 

  44. Haugk KL, Wilson HM, Swisshelm K, Quinn LS . Insulin-like growth factor (IGF)-binding protein-related protein-1: an autocrine/paracrine factor that inhibits skeletal myoblast differentiation but permits proliferation in response to IGF. Endocrinology 2000; 141: 100–110.

    Article  CAS  PubMed  Google Scholar 

  45. Plymate SR, Haugk KH, Sprenger CC, Nelson PS, Tennant MK, Zhang Y et al. Increased manganese superoxide dismutase (SOD-2) is part of the mechanism for prostate tumor suppression by MAC25/insulin-like growth factor binding-protein-related protein-1. Oncogene 2003; 22: 1024–1034.

    Article  CAS  PubMed  Google Scholar 

  46. Birkenkamp KU, Dokter WH, Esselink MT, Jonk LJ, Kruijer W, Vellenga E . A dual function for p38 MAP kinase in hematopoietic cells: involvement in apoptosis and cell activation. Leukemia 1999; 13: 1037–1045.

    Article  CAS  PubMed  Google Scholar 

  47. Bost F, Caron L, Marchetti I, Dani C, Marchand-Brustel Y, Binetruy B . Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochem J 2002; 361 (Part 3): 621–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We want to thank Liliana Mochmann for critical reading of the paper and Daniel Nowak for the technical support. We also thank all the members of the German multicenter acute lymphoblastic leukemia study group for their support, and the participating centers for enrolling patients and providing the clinical data. Funding: This work was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG) to CDB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C D Baldus.

Ethics declarations

Competing interests

The microarray innovations in leukemia study was in part supported by Roche Molecular Systems. TH is a part owner of the MLL Münchner Leukämie Labor GmbH. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heesch, S., Schlee, C., Neumann, M. et al. BAALC-associated gene expression profiles define IGFBP7 as a novel molecular marker in acute leukemia. Leukemia 24, 1429–1436 (2010). https://doi.org/10.1038/leu.2010.130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.130

Keywords

This article is cited by

Search

Quick links