Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Insights into the stem cells of chronic myeloid leukemia

Abstract

Chronic myeloid leukemia (CML) has long served as a paradigm for generating new insights into the cellular origin, pathogenesis and improved approaches to treating many types of human cancer. Early studies of the cellular phenotypes and genotypes represented in leukemic populations obtained from CML patients established the concept of an evolving clonal disorder originating in and initially sustained by a rare, multipotent, self-maintaining hematopoietic stem cell (HSC). More recent investigations continue to support this model, while also revealing new insights into the cellular and molecular mechanisms that explain how knowledge of CML stem cells and their early differentiating progeny can predict the differing and variable features of chronic phase and blast crisis. In particular, these emphasize the need for new agents that effectively and specifically target CML stem cells to produce non-toxic, but curative therapies that do not require lifelong treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Dameshek W . Some speculations on the myeloproliferative syndromes. Blood 1951; 6: 372–375.

    CAS  PubMed  Google Scholar 

  2. Nowell PC, Hungerford DA . A minute chromosome in chronic granulocytic leukemia. Science 1960; 132: 1497.

    Google Scholar 

  3. Rowley JD . Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293.

    CAS  PubMed  Google Scholar 

  4. Tough IM, Jacobs PA, Court Brown WM, Baikie AG, Williamson ER . Cytogenetic studies on bone-marrow in chronic myeloid leukaemia. Lancet 1963; 1: 844–846.

    CAS  PubMed  Google Scholar 

  5. Whang J, Frei III E, Tjio JH, Carbone PP, Brecher G . The distribution of the philadelphia chromosome in patients with chronic myelogenous leukemia. Blood 1963; 22: 664–673.

    CAS  PubMed  Google Scholar 

  6. Fialkow PJ, Gartler SM, Yoshida A . Clonal origin of chronic myelocytic leukemia in man. Proc Natl Acad Sci USA 1967; 58: 1468–1471.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fialkow PJ, Jacobson RJ, Papayannopoulou T . Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med 1977; 63: 125–130.

    CAS  PubMed  Google Scholar 

  8. Martin PJ, Najfeld V, Hansen JA, Penfold GK, Jacobson RJ, Fialkow PJ . Involvement of the B-lymphoid system in chronic myelogenous leukaemia. Nature 1980; 287: 49–50.

    CAS  PubMed  Google Scholar 

  9. Levin RH, Whang J, Tjio JH, Carbone PP, Frei III E, Freireich EJ . Persistent mitosis of transfused homologous leukocytes in children receiving antileukemic therapy. Science 1963; 142: 1305–1311.

    CAS  PubMed  Google Scholar 

  10. Graw Jr RG, Buckner CD, Whang-Peng J, Leventhal BG, Kruger G, Berard C et al. Complication of bone-marrow transplantation. Graft-versus-host disease resulting from chronic-myelogenous-leukaemia leucocyte transfusions. Lancet 1970; 2: 338–341.

    PubMed  Google Scholar 

  11. Dazzi F, Hasserjian R, Gordon MY, Boecklin F, Cotter F, Corbo M et al. Normal and chronic phase CML hematopoietic cells Repopulate NOD/SCID bone marrow with different kinetics and cell lineage representation. Hematol J 2000; 1: 307–315.

    CAS  PubMed  Google Scholar 

  12. Eisterer W, Jiang X, Christ O, Glimm H, Lee KH, Pang E et al. Different subsets of primary chronic myeloid leukemia stem cells engraft immunodeficient mice and produce a model of the human disease. Leukemia 2005; 19: 435–441.

    CAS  PubMed  Google Scholar 

  13. Petzer AL, Eaves CJ, Lansdorp PM, Ponchio L, Barnett MJ, Eaves AC . Characterization of primitive subpopulations of normal and leukemic cells present in the blood of patients with newly diagnosed as well as established chronic myeloid leukemia. Blood 1996; 88: 2162–2171.

    CAS  PubMed  Google Scholar 

  14. Goto T, Nishikori M, Arlin Z, Gee T, Kempin S, Burchenal J et al. Growth characteristics of leukemic and normal hematopoietic cells in Ph′+chronic myelogenous leukemia and effects of intensive treatment. Blood 1982; 59: 793–808.

    CAS  PubMed  Google Scholar 

  15. Coulombel L, Kalousek DK, Eaves CJ, Gupta CM, Eaves AC . Long-term marrow culture reveals chromosomally normal hematopoietic progenitor cells in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. N Engl J Med 1983; 308: 1493–1498.

    CAS  PubMed  Google Scholar 

  16. Deininger M, Buchdunger E, Druker BJ . The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005; 105: 2640–2653.

    CAS  PubMed  Google Scholar 

  17. Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 2006; 107: 4532–4539.

    CAS  PubMed  Google Scholar 

  18. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319–325.

    CAS  PubMed  Google Scholar 

  19. Jiang X, Smith C, Eaves A, Eaves C . The challenges of targeting chronic myeloid leukemia stem cells. Clin Lymphoma Myeloma 2007; 7 (Suppl 2): S71–S80.

    CAS  PubMed  Google Scholar 

  20. Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007; 21: 926–935.

    CAS  PubMed  Google Scholar 

  21. Valent P . Emerging stem cell concepts for imatinib-resistant chronic myeloid leukaemia: implications for the biology, management, and therapy of the disease. Br J Haematol 2008; 142: 361–378.

    CAS  PubMed  Google Scholar 

  22. Jiang X, Saw KM, Eaves A, Eaves C . Instability of BCR-ABL gene in primary and cultured chronic myeloid leukemia stem cells. J Natl Cancer Inst 2007; 99: 680–693.

    CAS  PubMed  Google Scholar 

  23. Nowicki MO, Falinski R, Koptyra M, Slupianek A, Stoklosa T, Gloc E et al. BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood 2004; 104: 3746–3753.

    CAS  PubMed  Google Scholar 

  24. Skorski T . BCR/ABL, DNA damage and DNA repair: implications for new treatment concepts. Leuk Lymphoma 2008; 49: 610–614.

    CAS  PubMed  Google Scholar 

  25. Pellicano F, Copland M, Jorgensen HG, Mountford J, Leber B, Holyoake TL . BMS-214662 induces mitochondrial apoptosis in chronic myeloid leukemia (CML) stem/progenitor cells, including CD34+38- cells, through activation of protein kinase Cbeta. Blood 2009; 114: 4186–4196.

    CAS  PubMed  Google Scholar 

  26. Zhang B, Strauss AC, Chu S, Li M, Ho Y, Shiang KD et al. Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell 2010; 17: 427–442.

    PubMed  PubMed Central  Google Scholar 

  27. Curtis RE, Boice Jr JD, Stovall M, Bernstein L, Holowaty E, Karjalainen S et al. Relationship of leukemia risk to radiation dose following cancer of the uterine corpus. J Natl Cancer Inst 1994; 86: 1315–1324.

    CAS  PubMed  Google Scholar 

  28. Ichimaru M, Ishimaru T, Mikami M, Yamada Y, Ohkita T . Incidence of leukemia in a fixed cohort of atomic bomb survivors and controls, Hiroshima and Nagasaki October 1950–December 1978. Technical Report RERF TR 13–81. Radiation Effects Research Foundation: Hiroshima, 1981.

    Google Scholar 

  29. Weiss HA, Darby SC, Fearn T, Doll R . Leukemia mortality after X-ray treatment for ankylosing spondylitis. Radiat Res 1995; 142: 1–11.

    CAS  PubMed  Google Scholar 

  30. Biernaux C, Loos M, Sels A, Huez G, Stryckmans P . Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 1995; 86: 3118–3122.

    CAS  PubMed  Google Scholar 

  31. Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV . The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 1998; 92: 3362–3367.

    CAS  PubMed  Google Scholar 

  32. Van Etten RA . Animal models of Philadelphia-positive leukemia. In: Carella AM, Daley GQ, Eaves CJ, Goldman JM, Hehlmann R (eds). Chronic Myeloid Leukemia: Biology and Treatment. Dunitz, M.: London, 2001, pp 101–131.

    Google Scholar 

  33. Chalandon Y, Jiang X, Christ O, Loutet S, Thanopoulou E, Eaves A et al. BCR-ABL-transduced human cord blood cells produce abnormal populations in immunodeficient mice. Leukemia 2005; 19: 442–448.

    CAS  PubMed  Google Scholar 

  34. Jiang Y, Zhao RC, Verfaillie CM . Abnormal integrin-mediated regulation of chronic myelogenous leukemia CD34+ cell proliferation: BCR/ABL up-regulates the cyclin-dependent kinase inhibitor, p27Kip, which is relocated to the cell cytoplasm and incapable of regulating cdk2 activity. Proc Natl Acad Sci USA 2000; 97: 10538–10543.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Daley GQ, Van Etten RA, Baltimore D . Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830.

    CAS  PubMed  Google Scholar 

  36. Li S, Ilaria Jr RL, Million RP, Daley GQ, Van Etten RA . The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 1999; 189: 1399–1412.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Elefanty AG, Hariharan IK, Cory S . bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice. EMBO J 1990; 9: 1069–1078.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004; 6: 587–596.

    CAS  PubMed  Google Scholar 

  39. Neering SJ, Bushnell T, Sozer S, Ashton J, Rossi RM, Wang PY et al. Leukemia stem cells in a genetically defined murine model of blast-crisis CML. Blood 2007; 110: 2578–2585.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    CAS  PubMed  Google Scholar 

  41. Abrahamsson AE, Geron I, Gotlib J, Dao KH, Barroga CF, Newton IG et al. Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci USA 2009; 106: 3925–3929.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bonifazi F, de Vivo A, Rosti G, Guilhot F, Guilhot J, Trabacchi E et al. Chronic myeloid leukemia and interferon-alpha: a study of complete cytogenetic responders. Blood 2001; 98: 3074–3081.

    CAS  PubMed  Google Scholar 

  43. Eaves CJ, Eaves A . Cell culture studies in CML. In: Hinton K (ed). Baillière's Clinical Haematology, 1st edn. Baillère Tindall/Saunders, W.B.: London, 1987, pp 931–961.

    Google Scholar 

  44. Yong AS, Goldman JM . Relapse of chronic myeloid leukaemia 14 years after allogeneic bone marrow transplantation. Bone Marrow Transplant 1999; 23: 827–828.

    CAS  PubMed  Google Scholar 

  45. Bakhshi A, Minowada J, Arnold A, Cossman J, Jensen JP, Whang-Peng J et al. Lymphoid blast crises of chronic myelogenous leukemia represent stages in the development of B-cell precursors. N Engl J Med 1983; 309: 826–831.

    CAS  PubMed  Google Scholar 

  46. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442: 818–822.

    CAS  PubMed  Google Scholar 

  47. Barabe F, Kennedy JA, Hope KJ, Dick JE . Modeling the initiation and progression of human acute leukemia in mice. Science 2007; 316: 600–604.

    CAS  PubMed  Google Scholar 

  48. Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 2008; 13: 483–495.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Eaves CJ, Eaves A . Progenitor cell dynamics. In: Carella AM, Daley GQ, Eaves CJ, Goldman JM, Hehlmann R (eds). Chronic Myeloid Leukemia : Biology and Treatment. Dunitz, M.: London, 2001, pp 73–100.

    Google Scholar 

  50. Eaves C, Cashman J, Eaves A . Defective regulation of leukemic hematopoiesis in chronic myeloid leukemia. Leuk Res 1998; 22: 1085–1096.

    CAS  PubMed  Google Scholar 

  51. Udomsakdi C, Eaves CJ, Lansdorp PM, Eaves AC . Phenotypic heterogeneity of primitive leukemic hematopoietic cells in patients with chronic myeloid leukemia. Blood 1992; 80: 2522–2530.

    CAS  PubMed  Google Scholar 

  52. Eaves CJ, Cashman JD, Zoumbos NC, Barnett MJ, Eaves AC . Biological strategies for the selective manipulation of normal and leukemic stem cells. Stem Cells 1993; 11 (Suppl 3): 109–121.

    PubMed  Google Scholar 

  53. Glimm H, Eisterer W, Lee K, Cashman J, Holyoake TL, Nicolini F et al. Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-beta2 microglobulin-null mice. J Clin Invest 2001; 107: 199–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sirard C, Lapidot T, Vormoor J, Cashman JD, Doedens M, Murdoch B et al. Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis. Blood 1996; 87: 1539–1548.

    CAS  PubMed  Google Scholar 

  55. Lewis ID, McDiarmid LA, Samels LM, To LB, Hughes TP . Establishment of a reproducible model of chronic-phase chronic myeloid leukemia in NOD/SCID mice using blood-derived mononuclear or CD34+ cells. Blood 1998; 91: 630–640.

    CAS  PubMed  Google Scholar 

  56. Wang JC, Lapidot T, Cashman JD, Doedens M, Addy L, Sutherland DR et al. High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood 1998; 91: 2406–2414.

    CAS  PubMed  Google Scholar 

  57. Verstegen MM, Cornelissen JJ, Terpstra W, Wagemaker G, Wognum AW . Multilineage outgrowth of both malignant and normal hemopoietic progenitor cells from individual chronic myeloid leukemia patients in immunodeficient mice. Leukemia 1999; 13: 618–628.

    CAS  PubMed  Google Scholar 

  58. Shultz LD, Ishikawa F, Greiner DL . Humanized mice in translational biomedical research. Nat Rev Immunol 2007; 7: 118–130.

    CAS  PubMed  Google Scholar 

  59. Goldman JP, Blundell MP, Lopes L, Kinnon C, Di Santo JP, Thrasher AJ . Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol 1998; 103: 335–342.

    CAS  PubMed  Google Scholar 

  60. Christ O, Eisterer W, Jiang X, Pang E, Leung K, Smith C et al. Transplantation of immunodeficient mice with Chronic Myeloid Leukemia (CML) cells from chronic phase patients reveals a hierarchy of CD34+ aldehyde dehydrogenase-positive cells with short- and long-term repopulating activity and transient responsiveness to imatinib mesylate in vivo. ASH Annual Meeting Abstracts 2004; 104: 2960.

    Google Scholar 

  61. Florian S, Sonneck K, Hauswirth AW, Krauth MT, Schernthaner GH, Sperr WR et al. Detection of molecular targets on the surface of CD34+/CD38—stem cells in various myeloid malignancies. Leuk Lymphoma 2006; 47: 207–222.

    CAS  PubMed  Google Scholar 

  62. Jiang X, Zhao Y, Forrest D, Smith C, Eaves A, Eaves C . Stem cell biomarkers in chronic myeloid leukemia. Dis Markers 2008; 24: 201–216.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Holyoake T, Jiang X, Eaves C, Eaves A . Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 1999; 94: 2056–2064.

    CAS  PubMed  Google Scholar 

  64. Bedi A, Zehnbauer BA, Collector MI, Barber JP, Zicha MS, Sharkis SJ et al. BCR-ABL gene rearrangement and expression of primitive hematopoietic progenitors in chronic myeloid leukemia. Blood 1993; 81: 2898–2902.

    CAS  PubMed  Google Scholar 

  65. Keating A, Wang XH, Laraya P . Variable transcription of BCR-ABL by Ph+ cells arising from hematopoietic progenitors in chronic myeloid leukemia. Blood 1994; 83: 1744–1749.

    CAS  PubMed  Google Scholar 

  66. Jiang X, Lopez A, Holyoake T, Eaves A, Eaves C . Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia. Proc Natl Acad Sci USA 1999; 96: 12804–12809.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Dube ID, Arlin ZA, Kalousek DK, Eaves CJ, Eaves AC . Nonclonal hemopoietic progenitor cells detected in long-term marrow cultures from a Turner syndrome mosaic with chronic myeloid leukemia. Blood 1984; 64: 1284–1287.

    CAS  PubMed  Google Scholar 

  68. Turhan AG, Humphries RK, Eaves CJ, Barnett MJ, Phillips GL, Kalousek DK et al. Detection of breakpoint cluster region- negative and nonclonal hematopoiesis in vitro and in vivo after transplantation of cells selected in cultures of chronic myeloid leukemia marrow. Blood 1990; 76: 2404–2410.

    CAS  PubMed  Google Scholar 

  69. Singer JW, Arlin ZA, Najfeld V, Adamson JW, Kempin SJ, Clarkson BD et al. Restoration of nonclonal hematopoiesis in chronic myelogenous leukemia (CML) following a chemotherapy-induced loss of the Ph1 chromosome. Blood 1980; 56: 356–360.

    CAS  PubMed  Google Scholar 

  70. Bumm T, Muller C, Al-Ali HK, Krohn K, Shepherd P, Schmidt E et al. Emergence of clonal cytogenetic abnormalities in Ph- cells in some CML patients in cytogenetic remission to imatinib but restoration of polyclonal hematopoiesis in the majority. Blood 2003; 101: 1941–1949.

    CAS  PubMed  Google Scholar 

  71. Miglino M, Grasso R, Varaldo R, Fugazza G, Colombo N, Clavio M et al. Molecular analysis of the Imatinib-induced complete cytogenetic response in chronic myelogenous leukemia. Leuk Lymphoma 2006; 47: 1348–1351.

    CAS  PubMed  Google Scholar 

  72. Holyoake TL, Jiang X, Drummond MW, Eaves AC, Eaves CJ . Elucidating critical mechanisms of deregulated stem cell turnover in the chronic phase of chronic myeloid leukemia. Leukemia 2002; 16: 549–558.

    CAS  PubMed  Google Scholar 

  73. Holyoake TL, Jiang X, Jorgensen HG, Graham S, Alcorn MJ, Laird C et al. Primitive quiescent leukemic cells from patients with chronic myeloid leukemia spontaneously initiate factor-independent growth in vitro in association with up-regulation of expression of interleukin-3. Blood 2001; 97: 720–728.

    CAS  PubMed  Google Scholar 

  74. Cashman J, Clark-Lewis I, Eaves A, Eaves C . Stromal-derived factor 1 inhibits the cycling of very primitive human hematopoietic cells in vitro and in NOD/SCID mice. Blood 2002; 99: 792–799.

    CAS  PubMed  Google Scholar 

  75. Cashman JD, Eaves CJ, Sarris AH, Eaves AC . MCP-1, not MIP-1alpha, is the endogenous chemokine that cooperates with TGF-beta to inhibit the cycling of primitive normal but not leukemic (CML) progenitors in long-term human marrow cultures. Blood 1998; 92: 2338–2344.

    CAS  PubMed  Google Scholar 

  76. Eaves CJ, Cashman JD, Wolpe SD, Eaves AC . Unresponsiveness of primitive chronic myeloid leukemia cells to macrophage inflammatory protein 1 alpha, an inhibitor of primitive normal hematopoietic cells. Proc Natl Acad Sci USA 1993; 90: 12015–12019.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cashman J, Dykstra B, Clark-Lewis I, Eaves A, Eaves C . Changes in the proliferative activity of human hematopoietic stem cells in NOD/SCID mice and enhancement of their transplantability after in vivo treatment with cell cycle inhibitors. J Exp Med 2002; 196: 1141–1149.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cashman JD, Eaves AC, Raines EW, Ross R, Eaves CJ . Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long-term human marrow cultures. I. Stimulatory role of a variety of mesenchymal cell activators and inhibitory role of TGF-beta. Blood 1990; 75: 96–101.

    CAS  PubMed  Google Scholar 

  79. Keller JR, Mantel C, Sing GK, Ellingsworth LR, Ruscetti SK, Ruscetti FW . Transforming growth factor beta 1 selectively regulates early murine hematopoietic progenitors and inhibits the growth of IL-3-dependent myeloid leukemia cell lines. J Exp Med 1988; 168: 737–750.

    CAS  PubMed  Google Scholar 

  80. Cashman JD, Eaves AC, Eaves CJ . Granulocyte-macrophage colony-stimulating factor modulation of the inhibitory effect of transforming growth factor-beta on normal and leukemic human hematopoietic progenitor cells. Leukemia 1992; 6: 886–892.

    CAS  PubMed  Google Scholar 

  81. Maguer-Satta V, Burl S, Liu L, Damen J, Chahine H, Krystal G et al. BCR-ABL accelerates C2-ceramide-induced apoptosis. Oncogene 1998; 16: 237–248.

    CAS  PubMed  Google Scholar 

  82. Zon LI . Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature 2008; 453: 306–313.

    CAS  PubMed  Google Scholar 

  83. Petzer AL, Eaves CJ, Barnett MJ, Eaves AC . Selective expansion of primitive normal hematopoietic cells in cytokine-supplemented cultures of purified cells from patients with chronic myeloid leukemia. Blood 1997; 90: 64–69.

    CAS  PubMed  Google Scholar 

  84. Udomsakdi C, Eaves CJ, Swolin B, Reid DS, Barnett MJ, Eaves AC . Rapid decline of chronic myeloid leukemic cells in long-term culture due to a defect at the leukemic stem cell level. Proc Natl Acad Sci USA 1992; 89: 6192–6196.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zandstra PW, Conneally E, Petzer AL, Piret JM, Eaves CJ . Cytokine manipulation of primitive human hematopoietic cell self-renewal. Proc Natl Acad Sci USA 1997; 94: 4698–4703.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Schemionek M, Elling C, Steidl U, Baumer N, Hamilton A, Spieker T et al. BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells. Blood 2010; 115: 3185–3195.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Daley GQ, Van Etten RA, Baltimore D . Blast crisis in a murine model of chronic myelogenous leukemia. Proc Natl Acad Sci USA 1991; 88: 11335–11338.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 2010; 463: 676–680.

    CAS  PubMed  Google Scholar 

  89. Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM et al. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 2007; 12: 528–541.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 2008; 14: 238–249.

    CAS  PubMed  Google Scholar 

  91. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 2008; 453: 1072–1078.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen Y, Hu Y, Zhang H, Peng C, Li S . Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat Genet 2009; 41: 783–792.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 2009; 458: 776–779.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sloma I, Imren S, Zhao Y, Humphries K, Eaves CJ . A novel strategy for expanding primitive leukemic cells from chronic phase CML patients by forced overexpression of a NUP98-HOXA10 homeodomain fusion gene. ASH Annual Meeting Abstracts 2008; 112: 1078.

    Google Scholar 

  95. Jorgensen HG, Allan EK, Jordanides NE, Mountford JC, Holyoake TL . Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood 2007; 109: 4016–4019.

    CAS  PubMed  Google Scholar 

  96. Chu S, Xu H, Shah NP, Snyder DS, Forman SJ, Sawyers CL et al. Detection of BCR-ABL kinase mutations in CD34+ cells from chronic myelogenous leukemia patients in complete cytogenetic remission on imatinib mesylate treatment. Blood 2005; 105: 2093–2098.

    CAS  PubMed  Google Scholar 

  97. Copland M . Chronic myelogenous leukemia stem cells: What's new? Curr Hematol Malig Rep 2009; 4: 66–73.

    PubMed  Google Scholar 

  98. Engler JR, Frede A, Saunders VA, Zannettino AC, Hughes TP, White DL . Chronic myeloid leukemia CD34+ cells have reduced uptake of imatinib due to low OCT-1 activity. Leukemia 2010; 24: 765–770.

    CAS  PubMed  Google Scholar 

  99. Konig H, Copland M, Chu S, Jove R, Holyoake TL, Bhatia R . Effects of dasatinib on SRC kinase activity and downstream intracellular signaling in primitive chronic myelogenous leukemia hematopoietic cells. Cancer Res 2008; 68: 9624–9633.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sorel N, Bonnet ML, Guillier M, Guilhot F, Brizard A, Turhan AG . Evidence of ABL-kinase domain mutations in highly purified primitive stem cell populations of patients with chronic myelogenous leukemia. Biochem Biophys Res Commun 2004; 323: 728–730.

    CAS  PubMed  Google Scholar 

  101. Barnes DJ, Palaiologou D, Panousopoulou E, Schultheis B, Yong AS, Wong A et al. Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res 2005; 65: 8912–8919.

    CAS  PubMed  Google Scholar 

  102. Thomas J, Wang L, Clark RE, Pirmohamed M . Active transport of imatinib into and out of cells: implications for drug resistance. Blood 2004; 104: 3739–3745.

    CAS  PubMed  Google Scholar 

  103. White DL, Saunders VA, Dang P, Engler J, Zannettino AC, Cambareri AC et al. OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 2006; 108: 697–704.

    CAS  PubMed  Google Scholar 

  104. Jordanides NE, Jorgensen HG, Holyoake TL, Mountford JC . Functional ABCG2 is overexpressed on primary CML CD34+ cells and is inhibited by imatinib mesylate. Blood 2006; 108: 1370–1373.

    CAS  PubMed  Google Scholar 

  105. Lepper ER, Nooter K, Verweij J, Acharya MR, Figg WD, Sparreboom A . Mechanisms of resistance to anticancer drugs: the role of the polymorphic ABC transporters ABCB1 and ABCG2. Pharmacogenomics 2005; 6: 115–138.

    CAS  PubMed  Google Scholar 

  106. Brain J, Saksena A, Laneuville P . The kinase inhibitor STI571 reverses the Bcr-Abl induced point mutation frequencies observed in pre-leukemic P190(Bcr-Abl) transgenic mice. Leuk Res 2002; 26: 1011–1016.

    CAS  PubMed  Google Scholar 

  107. Brain JM, Goodyer N, Laneuville P . Measurement of genomic instability in preleukemic P190BCR/ABL transgenic mice using inter-simple sequence repeat polymerase chain reaction. Cancer Res 2003; 63: 4895–4898.

    CAS  PubMed  Google Scholar 

  108. Canitrot Y, Lautier D, Laurent G, Frechet M, Ahmed A, Turhan AG et al. Mutator phenotype of BCR—ABL transfected Ba/F3 cell lines and its association with enhanced expression of DNA polymerase beta. Oncogene 1999; 18: 2676–2680.

    CAS  PubMed  Google Scholar 

  109. Koptyra M, Falinski R, Nowicki MO, Stoklosa T, Majsterek I, Nieborowska-Skorska M et al. BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood 2006; 108: 319–327.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. von Bubnoff N, Veach DR, van der Kuip H, Aulitzky WE, Sanger J, Seipel P et al. A cell-based screen for resistance of Bcr-Abl-positive leukemia identifies the mutation pattern for PD166326, an alternative Abl kinase inhibitor. Blood 2005; 105: 1652–1659.

    CAS  PubMed  Google Scholar 

  111. Flamant S, Turhan AG . Occurrence of de novo ABL kinase domain mutations in primary bone marrow cells after BCR-ABL gene transfer and Imatinib mesylate selection. Leukemia 2005; 19: 1265–1267.

    CAS  PubMed  Google Scholar 

  112. Crossman LC, Druker BJ, Deininger MW, Pirmohamed M, Wang L, Clark RE . hOCT 1 and resistance to imatinib. Blood 2005; 106: 1133–1134;author reply 1134.

    CAS  PubMed  Google Scholar 

  113. Jiang X, Forrest D, Nicolini F, Turhan A, Guilhot J, Yip C et al. Properties of CD34+ CML stem/progenitor cells that correlate with different clinical responses to Imatinib mesylate. Blood 2010, (in press).

  114. White DL, Dang P, Engler J, Frede A, Zrim S, Osborn M et al. Functional activity of the OCT-1 protein is predictive of long-term outcome in patients with chronic-phase chronic myeloid leukemia treated with imatinib. J Clin Oncol 2010; 28: 2761–2767.

    CAS  PubMed  Google Scholar 

  115. Janssen JJ, Klaver SM, Waisfisz Q, Pasterkamp G, de Kleijn DP, Schuurhuis GJ et al. Identification of genes potentially involved in disease transformation of CML. Leukemia 2005; 19: 998–1004.

    CAS  PubMed  Google Scholar 

  116. Jongen-Lavrencic M, Salesse S, Delwel R, Verfaillie CM . BCR/ABL-mediated downregulation of genes implicated in cell adhesion and motility leads to impaired migration toward CCR7 ligands CCL19 and CCL21 in primary BCR/ABL-positive cells. Leukemia 2005; 19: 373–380.

    CAS  PubMed  Google Scholar 

  117. Kronenwett R, Butterweck U, Steidl U, Kliszewski S, Neumann F, Bork S et al. Distinct molecular phenotype of malignant CD34(+) hematopoietic stem and progenitor cells in chronic myelogenous leukemia. Oncogene 2005; 24: 5313–5324.

    CAS  PubMed  Google Scholar 

  118. Nowicki MO, Pawlowski P, Fischer T, Hess G, Pawlowski T, Skorski T . Chronic myelogenous leukemia molecular signature. Oncogene 2003; 22: 3952–3963.

    CAS  PubMed  Google Scholar 

  119. Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA 2006; 103: 2794–2799.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Salesse S, Verfaillie CM . BCR/ABL-mediated increased expression of multiple known and novel genes that may contribute to the pathogenesis of chronic myelogenous leukemia. Mol Cancer Ther 2003; 2: 173–182.

    CAS  PubMed  Google Scholar 

  121. Yong AS, Szydlo RM, Goldman JM, Apperley JF, Melo JV . Molecular profiling of CD34+ cells identifies low expression of CD7, along with high expression of proteinase 3 or elastase, as predictors of longer survival in patients with CML. Blood 2006; 107: 205–212.

    CAS  PubMed  Google Scholar 

  122. Zhao Y, Delaney A, Raouf A, Raghuram K, Li HI, Schnerch A et al. Differentially expressed and novel transcripts in highly purified chronic phase CML stem cells. ASH Annual Meeting Abstracts 2008; 112: 193.

    Google Scholar 

  123. Diaz-Blanco E, Bruns I, Neumann F, Fischer JC, Graef T, Rosskopf M et al. Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia 2007; 21: 494–504.

    CAS  PubMed  Google Scholar 

  124. Eiring AM, Neviani P, Santhanam R, Oaks JJ, Chang JS, Notari M et al. Identification of novel posttranscriptional targets of the BCR/ABL oncoprotein by ribonomics: requirement of E2F3 for BCR/ABL leukemogenesis. Blood 2008; 111: 816–828.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hu Y, Chen Y, Douglas L, Li S . beta-Catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia 2009; 23: 109–116.

    CAS  PubMed  Google Scholar 

  126. Jin L, Tabe Y, Konoplev S, Xu Y, Leysath CE, Lu H et al. CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol Cancer Ther 2008; 7: 48–58.

    CAS  PubMed  Google Scholar 

  127. Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 2009; 119: 1109–1123.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Neviani P, Santhanam R, Oaks JJ, Eiring AM, Notari M, Blaser BW et al. FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest 2007; 117: 2408–2421.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Neviani P, Santhanam R, Trotta R, Notari M, Blaser BW, Liu S et al. The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 2005; 8: 355–368.

    CAS  PubMed  Google Scholar 

  130. Copland M, Pellicano F, Richmond L, Allan EK, Hamilton A, Lee FY et al. BMS-214662 potently induces apoptosis of chronic myeloid leukemia stem and progenitor cells and synergizes with tyrosine kinase inhibitors. Blood 2008; 111: 2843–2853.

    CAS  PubMed  Google Scholar 

  131. DeGeer D, Newmarch K, Zhou L, Chen M, Saw KM, Turhan AG et al. A Novel AHI-1-BCR-ABL-JAK2 Interaction Complex Mediates Cellular Resistance to Tyrosine Kinase Inhibitors in CML. ASH Annual Meeting Abstracts 2009; 114: 38.

    Google Scholar 

  132. Zhou LL, Zhao Y, Ringrose A, DeGeer D, Kennah E, Lin AE et al. AHI-1 interacts with BCR-ABL and modulates BCR-ABL transforming activity and imatinib response of CML stem/progenitor cells. J Exp Med 2008; 205: 2657–2671.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The preparation of this review was enabled by support from grants from the Canadian Cancer Society Research Institute (to XJ, ACE and CJE), la Fondation pour la Recherche Médicale (to IS), La Fondation de France (to IS) and the Leukemia & Lymphoma Society of Canada and the Cancer Research Society (XJ). XJ also holds a Scholarship from the Michael Smith Foundation for Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C J Eaves.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sloma, I., Jiang, X., Eaves, A. et al. Insights into the stem cells of chronic myeloid leukemia. Leukemia 24, 1823–1833 (2010). https://doi.org/10.1038/leu.2010.159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.159

Keywords

This article is cited by

Search

Quick links