Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Targeting PKCδ-mediated topoisomerase IIβ overexpression subverts the differentiation block in a retinoic acid-resistant APL cell line

Abstract

Retinoic acid (RA) relieves the maturation block in t(15:17) acute promyelocytic leukemia (APL), leading to granulocytic differentiation. However, RA treatment alone invariably results in RA resistance, both in vivo and in vitro. RA-resistant cell lines have been shown to serve as useful models for elucidation of mechanisms of resistance. Previously, we identified topoisomerase II beta (TOP2B) as a novel mediator of RA-resistance in APL cell lines. In this study, we show that both TOP2B protein stability and activity are regulated by a member of the protein kinase C (PRKC) family, PRKC delta (PRKCD). Co-treatment with a pharmacologic inhibitor of PRKCD and RA resulted in the induction of an RA responsive reporter construct, as well as the endogenous RA target genes, CEBPE, CYP26A1 and RIG-I. Furthermore, the co-treatment overcame the differentiation block in RA-resistant cells, as assessed by morphological analysis, restoration of promyelocytic leukemia nuclear bodies, induction of CD11c cell surface expression and an increase in nitro-blue-tetrazolium reduction. Cumulatively, our data suggest a model whereby inhibition of PRKCD decreases TOP2B protein levels, leading to a loss of TOP2B-mediated repressive effects on RA-induced transcription and granulocytic differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A . The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991; 66: 675–684.

    Article  CAS  PubMed  Google Scholar 

  2. Kakizuka A, Miller Jr WH, Umesono K, Warrell Jr RP, Frankel SR, Murty VV et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 1991; 66: 663–674.

    Article  CAS  PubMed  Google Scholar 

  3. Pandolfi PP, Grignani F, Alcalay M, Mencarelli A, Biondi A, LoCoco F et al. Structure and origin of the acute promyelocytic leukemia myl/RAR alpha cDNA and characterization of its retinoid-binding and transactivation properties. Oncogene 1991; 6: 1285–1292.

    CAS  PubMed  Google Scholar 

  4. Fenaux P, Le Deley MC, Castaigne S, Archimbaud E, Chomienne C, Link H et al. Effect of all transretinoic acid in newly diagnosed acute promyelocytic leukemia. Results of a multicenter randomized trial. European APL 91 Group. Blood 1993; 82: 3241–3249.

    CAS  PubMed  Google Scholar 

  5. Cornic M, Chomienne C . Induction of retinoid resistance by all-trans retinoic acid in acute promyelocytic leukemia after remission. Leuk Lymphoma 1995; 18: 249–257.

    Article  CAS  PubMed  Google Scholar 

  6. Duprez E, Ruchaud S, Houge G, Martin-Thouvenin V, Valensi F, Kastner P et al. A retinoid acid ‘resistant’ t(15;17) acute promyelocytic leukemia cell line: isolation, morphological, immunological, and molecular features. Leukemia 1992; 6: 1281–1287.

    CAS  PubMed  Google Scholar 

  7. Imaizumi M, Suzuki H, Yoshinari M, Sato A, Saito T, Sugawara A et al. Mutations in the E-domain of RAR portion of the PML/RAR chimeric gene may confer clinical resistance to all-trans retinoic acid in acute promyelocytic leukemia. Blood 1998; 92: 374–382.

    CAS  PubMed  Google Scholar 

  8. Ding W, Li YP, Nobile LM, Grills G, Carrera I, Paietta E et al. Leukemic cellular retinoic acid resistance and missense mutations in the PML-RARalpha fusion gene after relapse of acute promyelocytic leukemia from treatment with all-trans retinoic acid and intensive chemotherapy. Blood 1998; 92: 1172–1183.

    CAS  PubMed  Google Scholar 

  9. Marasca R, Zucchini P, Galimberti S, Leonardi G, Vaccari P, Donelli A et al. Missense mutations in the PML/RARalpha ligand binding domain in ATRA-resistant As(2)O(3) sensitive relapsed acute promyelocytic leukemia. Haematologica 1999; 84: 963–968.

    CAS  PubMed  Google Scholar 

  10. Zhou DC, Kim SH, Ding W, Schultz C, Warrell Jr RP, Gallagher RE . Frequent mutations in the ligand-binding domain of PML-RARalpha after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to response to all-trans retinoic acid and histone deacetylase inhibitors in vitro and in vivo. Blood 2002; 99: 1356–1363.

    Article  CAS  PubMed  Google Scholar 

  11. Rosenauer A, Raelson JV, Nervi C, Eydoux P, DeBlasio A, Miller Jr WH . Alterations in expression, binding to ligand and DNA, and transcriptional activity of rearranged and wild-type retinoid receptors in retinoid-resistant acute promyelocytic leukemia cell lines. Blood 1996; 88: 2671–2682.

    CAS  PubMed  Google Scholar 

  12. Shao W, Benedetti L, Lamph WW, Nervi C, Miller Jr WH . A retinoid-resistant acute promyelocytic leukemia subclone expresses a dominant negative PML-RAR alpha mutation. Blood 1997; 89: 4282–4289.

    CAS  PubMed  Google Scholar 

  13. McNamara S, Wang H, Hanna N, Miller Jr WH . Topoisomerase II{beta} negatively modulates RAR{alpha} function-a novel mechanism of retinoic acid resistance. Mol Cell Biol 2008; 28: 2066–2077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Austin CA, Marsh KL . Eukaryotic DNA topoisomerase II beta. Bioessays 1998; 20: 215–226.

    Article  CAS  PubMed  Google Scholar 

  15. Dong KC, Berger JM . Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature 2007; 450: 1201–1205.

    Article  CAS  PubMed  Google Scholar 

  16. Chen AY, Liu LF . DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol 1994; 34: 191–218.

    Article  CAS  PubMed  Google Scholar 

  17. Cardenas ME, Gasser SM . Regulation of topoisomerase II by phosphorylation: a role for casein kinase II. J Cell Sci 1993; 104 (Part 2): 219–225.

    CAS  PubMed  Google Scholar 

  18. Aoyama M, Grabowski DR, Isaacs RJ, Krivacic KA, Rybicki LA, Bukowski RM et al. Altered expression and activity of topoisomerases during all-trans retinoic acid-induced differentiation of HL-60 cells. Blood 1998; 92: 2863–2870.

    CAS  PubMed  Google Scholar 

  19. Mirski SE, Sparks KE, Friedrich B, Kohler M, Mo YY, Beck WT et al. Topoisomerase II binds importin alpha isoforms and exportin/CRM1 but does not shuttle between the nucleus and cytoplasm in proliferating cells. Exp Cell Res 2007; 313: 627–637.

    Article  CAS  PubMed  Google Scholar 

  20. Cote S, Zhou D, Bianchini A, Nervi C, Gallagher RE, Miller Jr WH . Altered ligand binding and transcriptional regulation by mutations in the PML/RARalpha ligand-binding domain arising in retinoic acid-resistant patients with acute promyelocytic leukemia. Blood 2000; 96: 3200–3208.

    CAS  PubMed  Google Scholar 

  21. Diaz Z, Mann KK, Marcoux S, Kourelis M, Colombo M, Komarnitsky PB et al. A novel arsenical has antitumor activity toward As2O3-resistant and MRP1/ABCC1-overexpressing cell lines. Leukemia 2008; 22: 1853–1863.

    Article  CAS  PubMed  Google Scholar 

  22. Momparler RL, Dore BT, Momparler LF . Effect of 5-aza-2′-deoxycytidine and retinoic acid on differentiation and c-myc expression in HL-60 myeloid leukemic cells. Cancer Lett 1990; 54: 21–28.

    Article  CAS  PubMed  Google Scholar 

  23. Yoshida K, Yamaguchi T, Shinagawa H, Taira N, Nakayama KI, Miki Y . Protein kinase C delta activates topoisomerase IIalpha to induce apoptotic cell death in response to DNA damage. Mol Cell Biol 2006; 26: 3414–3431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mischak H, Kolch W, Goodnight J, Davidson WF, Rapp U, Rose-John S et al. Expression of protein kinase C genes in hemopoietic cells is cell-type- and B cell-differentiation stage specific. J Immunol 1991; 147: 3981–3987.

    CAS  PubMed  Google Scholar 

  25. Kambhampati S, Li Y, Verma A, Sassano A, Majchrzak B, Deb DK et al. Activation of protein kinase C delta by all-trans-retinoic acid. J Biol Chem 2003; 278: 32544–32551.

    Article  CAS  PubMed  Google Scholar 

  26. del Rincon SV, Guo Q, Morelli C, Shiu HY, Surmacz E, Miller WH . Retinoic acid mediates degradation of IRS-1 by the ubiquitin-proteasome pathway, via a PKC-dependant mechanism. Oncogene 2004; 23: 9269–9279.

    Article  CAS  PubMed  Google Scholar 

  27. Gschwendt M, Muller HJ, Kielbassa K, Zang R, Kittstein W, Rincke G et al. Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun 1994; 199: 93–98.

    Article  CAS  PubMed  Google Scholar 

  28. Keenan C, Goode N, Pears C . Isoform specificity of activators and inhibitors of protein kinase C gamma and delta. FEBS Lett 1997; 415: 101–108.

    Article  CAS  PubMed  Google Scholar 

  29. Frasch SC, Henson PM, Kailey JM, Richter DA, Janes MS, Fadok VA et al. Regulation of phospholipid scramblase activity during apoptosis and cell activation by protein kinase Cdelta. J Biol Chem 2000; 275: 23065–23073.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao KW, Li X, Zhao Q, Huang Y, Li D, Peng ZG et al. Protein kinase Cdelta mediates retinoic acid and phorbol myristate acetate-induced phospholipid scramblase 1 gene expression: its role in leukemic cell differentiation. Blood 2004; 104: 3731–3738.

    Article  CAS  PubMed  Google Scholar 

  31. Kaur S, Parmar S, Smith J, Katsoulidis E, Li Y, Sassano A et al. Role of protein kinase C-delta (PKC-delta) in the generation of the effects of IFN-alpha in chronic myelogenous leukemia cells. Exp Hematol 2005; 33: 550–557.

    Article  CAS  PubMed  Google Scholar 

  32. Kin Y, Shibuya M, Maru Y . Inhibition of protein kinase C delta has negative effect on anchorage-independent growth of BCR-ABL-transformed Rat1 cells. Leuk Res 2001; 25: 821–825.

    Article  CAS  PubMed  Google Scholar 

  33. Liao YF, Hung YC, Chang WH, Tsay GJ, Hour TC, Hung HC et al. The PKC delta inhibitor, rottlerin, induces apoptosis of haematopoietic cell lines through mitochondrial membrane depolarization and caspases’ cascade. Life Sci 2005; 77: 707–719.

    Article  CAS  PubMed  Google Scholar 

  34. Davies SP, Reddy H, Caivano M, Cohen P . Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 2000; 351 (Part 1): 95–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kontny E, Kurowska M, Szczepanska K, Maslinski W . Rottlerin, a PKC isozyme-selective inhibitor, affects signaling events and cytokine production in human monocytes. J Leukoc Biol 2000; 67: 249–258.

    Article  CAS  PubMed  Google Scholar 

  36. Martiny-Baron G, Kazanietz MG, Mischak H, Blumberg PM, Kochs G, Hug H et al. Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976. J Biol Chem 1993; 268: 9194–9197.

    CAS  PubMed  Google Scholar 

  37. Ackerman P, Glover CV, Osheroff N . Phosphorylation of DNA topoisomerase II by casein kinase II: modulation of eukaryotic topoisomerase II activity in vitro. Proc Natl Acad Sci USA 1985; 82: 3164–3168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marini JC, Miller KG, Englund PT . Decatenation of kinetoplast DNA by topoisomerases. J Biol Chem 1980; 255: 4976–4979.

    CAS  PubMed  Google Scholar 

  39. Koken MH, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N et al. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J 1994; 13: 1073–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heck MM, Hittelman WN, Earnshaw WC . In vivo phosphorylation of the 170-kDa form of eukaryotic DNA topoisomerase II. Cell cycle analysis. J Biol Chem 1989; 264: 15161–15164.

    CAS  PubMed  Google Scholar 

  41. Kimura K, Nozaki N, Saijo M, Kikuchi A, Ui M, Enomoto T . Identification of the nature of modification that causes the shift of DNA topoisomerase II beta to apparent higher molecular weight forms in the M phase. J Biol Chem 1994; 269: 24523–24526.

    CAS  PubMed  Google Scholar 

  42. Burden DA, Sullivan DM . Phosphorylation of the alpha- and beta-isoforms of DNA topoisomerase II is qualitatively different in interphase and mitosis in Chinese hamster ovary cells. Biochemistry 1994; 33: 14651–14655.

    Article  CAS  PubMed  Google Scholar 

  43. Wells NJ, Addison CM, Fry AM, Ganapathi R, Hickson ID . Serine 1524 is a major site of phosphorylation on human topoisomerase II alpha protein in vivo and is a substrate for casein kinase II in vitro. J Biol Chem 1994; 269: 29746–29751.

    CAS  PubMed  Google Scholar 

  44. Grozav AG, Chikamori K, Kozuki T, Grabowski DR, Bukowski RM, Willard B et al. Casein kinase I delta/epsilon phosphorylates topoisomerase IIalpha at serine-1106 and modulates DNA cleavage activity. Nucleic Acids Res 2009; 37: 382–392.

    Article  CAS  PubMed  Google Scholar 

  45. Li H, Wang Y, Liu X . Plk1-dependent phosphorylation regulates functions of DNA topoisomerase IIalpha in cell cycle progression. J Biol Chem 2008; 283: 6209–6221.

    Article  CAS  PubMed  Google Scholar 

  46. Chikamori K, Grabowski DR, Kinter M, Willard BB, Yadav S, Aebersold RH et al. Phosphorylation of serine 1106 in the catalytic domain of topoisomerase II alpha regulates enzymatic activity and drug sensitivity. J Biol Chem 2003; 278: 12696–12702.

    Article  CAS  PubMed  Google Scholar 

  47. Grabowski DR, Holmes KA, Aoyama M, Ye Y, Rybicki LA, Bukowski RM et al. Altered drug interaction and regulation of topoisomerase IIbeta: potential mechanisms governing sensitivity of HL-60 cells to amsacrine and etoposide. Mol Pharmacol 1999; 56: 1340–1345.

    Article  CAS  PubMed  Google Scholar 

  48. Buschmann T, Potapova O, Bar-Shira A, Ivanov VN, Fuchs SY, Henderson S et al. Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Biol 2001; 21: 2743–2754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Okazaki K, Sagata N . The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells. EMBO J 1995; 14: 5048–5059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Radominska-Pandya A, Chen G, Czernik PJ, Little JM, Samokyszyn VM, Carter CA et al. Direct interaction of all-trans-retinoic acid with protein kinase C (PKC). Implications for PKC signaling and cancer therapy. J Biol Chem 2000; 275: 22324–22330.

    Article  CAS  PubMed  Google Scholar 

  51. Yen A, Roberson MS, Varvayanis S, Lee AT . Retinoic acid induced mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest. Cancer Res 1998; 58: 3163–3172.

    CAS  PubMed  Google Scholar 

  52. Miranda MB, McGuire TF, Johnson DE . Importance of MEK-1/-2 signaling in monocytic and granulocytic differentiation of myeloid cell lines. Leukemia 2002; 16: 683–692.

    Article  CAS  PubMed  Google Scholar 

  53. Alsayed Y, Uddin S, Mahmud N, Lekmine F, Kalvakolanu DV, Minucci S et al. Activation of Rac1 and the p38 mitogen-activated protein kinase pathway in response to all-trans-retinoic acid. J Biol Chem 2001; 276: 4012–4019.

    Article  CAS  PubMed  Google Scholar 

  54. Xu K, Chang CM, Gao H, Shu HK . Epidermal growth factor-dependent cyclooxygenase-2 induction in gliomas requires protein kinase C-delta. Oncogene 2009; 28: 1410–1420.

    Article  CAS  PubMed  Google Scholar 

  55. Vey N, Mozziconacci MJ, Groulet-Martinec A, Debono S, Finetti P, Carbuccia N et al. Identification of new classes among acute myelogenous leukaemias with normal karyotype using gene expression profiling. Oncogene 2004; 23: 9381–9391.

    Article  CAS  PubMed  Google Scholar 

  56. Gutierrez NC, Ocio EM, de Las Rivas J, Maiso P, Delgado M, Ferminan E et al. Gene expression profiling of B lymphocytes and plasma cells from Waldenstrom's macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals. Leukemia 2007; 21: 541–549.

    Article  CAS  PubMed  Google Scholar 

  57. McKenna SL, West RR, Whittaker JA, Padua RA, Holmes JA . Topoisomerase II alpha expression in acute myeloid leukaemia and its relationship to clinical outcome. Leukemia 1994; 8: 1498–1502.

    CAS  PubMed  Google Scholar 

  58. Lage H, Helmbach H, Dietel M, Schadendorf D . Modulation of DNA topoisomerase II activity and expression in melanoma cells with acquired drug resistance. Br J Cancer 2000; 82: 488–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Herzog CE, Holmes KA, Tuschong LM, Ganapathi R, Zwelling LA . Absence of topoisomerase IIbeta in an amsacrine-resistant human leukemia cell line with mutant topoisomerase IIalpha. Cancer Res 1998; 58: 5298–5300.

    CAS  PubMed  Google Scholar 

  60. Buzdar AU . Topoisomerase IIalpha gene amplification and response to anthracycline-containing adjuvant chemotherapy in breast cancer. J Clin Oncol 2006; 24: 2409–2411.

    Article  PubMed  Google Scholar 

  61. Mandelli F, Diverio D, Avvisati G, Luciano A, Barbui T, Bernasconi C et al. Molecular remission in PML/RAR alpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell’Adulto and Associazione Italiana di Ematologia ed Oncologia Pediatrica Cooperative Groups. Blood 1997; 90: 1014–1021.

    CAS  PubMed  Google Scholar 

  62. Afonja O, Raaka BM, Huang A, Das S, Zhao X, Helmer E et al. RAR agonists stimulate SOX9 gene expression in breast cancer cell lines: evidence for a role in retinoid-mediated growth inhibition. Oncogene 2002; 21: 7850–7860.

    Article  CAS  PubMed  Google Scholar 

  63. Duprez E, Wagner K, Koch H, Tenen DG . C/EBPbeta: a major PML-RARA-responsive gene in retinoic acid-induced differentiation of APL cells. EMBO J 2003; 22: 5806–5816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Oh Y, Gucev Z, Ng L, Muller HL, Rosenfeld RG . Antiproliferative actions of insulin-like growth factor binding protein (IGFBP)-3 in human breast cancer cells. Prog Growth Factor Res 1995; 6: 503–512.

    Article  CAS  PubMed  Google Scholar 

  65. Grolleau A, Wietzerbin J, Beretta L . Defect in the regulation of 4E-BP1 and 2, two repressors of translation initiation, in the retinoid acid resistant cell lines, NB4-R1 and NB4-R2. Leukemia 2000; 14: 1909–1914.

    Article  CAS  PubMed  Google Scholar 

  66. Perissi V, Aggarwal A, Glass CK, Rose DW, Rosenfeld MG . A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 2004; 116: 511–526.

    Article  CAS  PubMed  Google Scholar 

  67. Chen Y, Hu X, Wei LN . Molecular interaction of retinoic acid receptors with coregulators PCAF and RIP140. Mol Cell Endocrinol 2004; 226: 43–50.

    Article  CAS  PubMed  Google Scholar 

  68. Zhao HL, Ueki N, Marcelain K, Hayman MJ . The Ski protein can inhibit ligand induced RARalpha and HDAC3 degradation in the retinoic acid signaling pathway. Biochem Biophys Res Commun 2009; 383: 119–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Björn D Kuhl and Filippa Pettersson for critical reading of the paper. This work was supported by a grant from the Canadian Institutes of Health Research. WH Miller, Jr, is a Chercheur National of Fonds de la Recherche en Santé du Québec. J Nichol was supported by a student fellowship from the Cole Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W H Miller Jr.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNamara, S., Nichol, J., Wang, H. et al. Targeting PKCδ-mediated topoisomerase IIβ overexpression subverts the differentiation block in a retinoic acid-resistant APL cell line. Leukemia 24, 729–739 (2010). https://doi.org/10.1038/leu.2010.27

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.27

Keywords

This article is cited by

Search

Quick links