Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Spotlight on miRNA in Hematopoiesis

MicroRNAs in acute leukemia: from biological players to clinical contributors

Abstract

MicroRNAs (miRNAs) are involved in the management of hematopoiesis. As a consequence, miRNA dysregulation causes disruption of the hematopoietic system and leukemia may arise. We here comprehensively discuss miRNAs found discriminative for cytogenetic and molecular subtypes of acute leukemia. These miRNAs are either known miRNAs involved in leukemogenesis with proven tumor suppressor or oncogenic activities or are newly identified by high-throughput sequencing with yet unknown function. Furthermore, forces are outlined that drive aberrant miRNA function, which include genetic abnormalities (for example, deletions, translocations and mutations) and epigenetic aberrations (for example, aberrant DNA methylation or histone modifications). Interestingly, leukemia-silenced miRNAs can be re-expressed upon treatment with de-methylating agents. Targeting miRNA expression may serve a therapeutical role, albeit at present this way of targeted therapy is in its infancy. However, emerging knowledge about the biology of miRNAs in leukemia may result into a role for these miRNAs in the diagnosis and treatment of acute leukemia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V . The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–854.

    Article  CAS  PubMed  Google Scholar 

  2. Wightman B, Ha I, Ruvkun G . Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75: 855–862.

    CAS  PubMed  Google Scholar 

  3. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  4. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD . Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003; 115: 199–208.

    Article  CAS  PubMed  Google Scholar 

  6. Carthew RW, Sontheimer EJ . Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136: 642–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–811.

    Article  CAS  PubMed  Google Scholar 

  8. Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 2010; 140: 652–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Croce CM . Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10: 704–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garzon R, Croce CM . MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol 2008; 15: 352–358.

    Article  CAS  PubMed  Google Scholar 

  11. Chen CZ, Lodish HF . MicroRNAs as regulators of mammalian hematopoiesis. Semin Immunol 2005; 17: 155–165.

    Article  CAS  PubMed  Google Scholar 

  12. Hackanson B, Bennett KL, Brena RM, Jiang J, Claus R, Chen SS et al. Epigenetic modification of CCAAT/enhancer binding protein alpha expression in acute myeloid leukemia. Cancer Res 2008; 68: 3142–3151.

    Article  CAS  PubMed  Google Scholar 

  13. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 2010; 17: 28–40.

    Article  CAS  PubMed  Google Scholar 

  15. Costinean S, Sandhu SK, Pedersen IM, Tili E, Trotta R, Perrotti D et al. Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood 2009; 114: 1374–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A et al. Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype. Nat Med 2009; 16: 49–58.

    Article  CAS  PubMed  Google Scholar 

  17. Starczynowski DT, Morin R, McPherson A, Lam J, Chari R, Wegrzyn J et al. Genome-wide identification of human microRNAs located in leukemia-associated genomic alterations. Blood 2011; 117: 595–607.

    Article  CAS  PubMed  Google Scholar 

  18. Dixon-McIver A, East P, Mein CA, Cazier JB, Molloy G, Chaplin T et al. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One 2008; 3: e2141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 2008; 111: 3183–3189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jongen-Lavrencic M, Sun SM, Dijkstra MK, Valk PJ, Lowenberg B . MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 2008; 111: 5078–5085.

    Article  CAS  PubMed  Google Scholar 

  21. Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA 2008; 105: 15535–15540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schotte D, De Menezes RX, Akbari Moqadam F, Mohammadi Khankahdani L, Lange-Turenhout EA, Chen C et al. MicroRNAs characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica 2011; 96: 703–711.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Danen-van Oorschot A, Kuipers J, Arentsen-Peters S, Schotte D, De Haas V, Trka J et al. Differentially expressed microRNAs in cytogenetic and molecular subtypes of pediatric AML. Pediatr Blood Cancer 2011 (in press).

  24. Gefen N, Binder V, Zaliova M, Linka Y, Morrow M, Novosel A et al. Hsa-mir-125b-2 is highly expressed in childhood ETV6/RUNX1 (TEL/AML1) leukemias and confers survival advantage to growth inhibitory signals independent of p53. Leukemia 2010; 24: 89–96.

    Article  CAS  PubMed  Google Scholar 

  25. Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA 2008; 105: 3945–3950.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schotte D, Chau JC, Sylvester G, Liu G, Chen C, van der Velden VH et al. Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 2009; 23: 313–322.

    Article  CAS  PubMed  Google Scholar 

  27. Diakos C, Zhong S, Xiao Y, Zhou M, Vasconcelos GM, Krapf G et al. TEL-AML1 regulation of survivin and apoptosis via miRNA-494 and miRNA-320a. Blood 2010; 116: 4885–4893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schotte D, Akbari Moqadam F, Lange-Turenhout EA, Chen C, Pieters R, Den Boer ML . Discovery of new microRNAs by small RNAome deep sequencing in childhood acute lymphoblastic leukemia. Leukemia 2011; e-pub ahead of print 24 May 2011.

  29. Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG, Peters ST et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 2009; 10: 125–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Becker H, Marcucci G, Maharry K, Radmacher MD, Mrozek K, Margeson D et al. Favorable prognostic impact of NPM1 mutations in older patients with cytogenetically normal de novo acute myeloid leukemia and associated gene- and microRNA-expression signatures: a Cancer and Leukemia Group B study. J Clin Oncol 2010; 28: 596–604.

    Article  CAS  PubMed  Google Scholar 

  31. Marcucci G, Maharry K, Wu YZ, Radmacher MD, Mrozek K, Margeson D et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2010; 28: 2348–2355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mi S, Li Z, Chen P, He C, Cao D, Elkahloun A et al. Aberrant overexpression and function of the miR-17-92 cluster in MLL-rearranged acute leukemia. Proc Natl Acad Sci USA 2010; 107: 3710–3715.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mavrakis KJ, Wolfe AL, Oricchio E, Palomero T, de Keersmaecker K, McJunkin K et al. Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol 2010; 12: 372–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Z, Luo RT, Mi S, Sun M, Chen P, Bao J et al. Consistent deregulation of gene expression between human and murine MLL rearrangement leukemias. Cancer Res 2009; 69: 1109–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zaidi SK, Dowdy CR, van Wijnen AJ, Lian JB, Raza A, Stein JL et al. Altered Runx1 subnuclear targeting enhances myeloid cell proliferation and blocks differentiation by activating a miR-24/MKP-7/MAPK network. Cancer Res 2009; 69: 8249–8255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marcucci G, Maharry K, Radmacher MD, Mrozek K, Vukosavljevic T, Paschka P et al. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J Clin Oncol 2008; 26: 5078–5087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Langer C, Marcucci G, Holland KB, Radmacher MD, Maharry K, Paschka P et al. Prognostic importance of MN1 transcript levels, and biologic insights from MN1-associated gene and microRNA expression signatures in cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 2009; 27: 3198–3204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boyerinas B, Park SM, Shomron N, Hedegaard MM, Vinther J, Andersen JS et al. Identification of let-7-regulated oncofetal genes. Cancer Res 2008; 68: 2587–2591.

    Article  CAS  PubMed  Google Scholar 

  39. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635–647.

    Article  CAS  PubMed  Google Scholar 

  40. Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 2007; 67: 9762–9770.

    Article  CAS  PubMed  Google Scholar 

  41. Maller Schulman BR, Liang X, Stahlhut C, DelConte C, Stefani G, Slack FJ . The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and neural tube closure. Cell Cycle 2008; 7: 3935–3942.

    Article  PubMed  Google Scholar 

  42. Garzon R, Heaphy CE, Havelange V, Fabbri M, Volinia S, Tsao T et al. MicroRNA 29b functions in acute myeloid leukemia. Blood 2009; 114: 5331–5341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 2006; 66: 11590–11593.

    Article  CAS  PubMed  Google Scholar 

  44. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA 2002; 99: 6955–6960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Efanov A, Zanesi N, Nazaryan N, Santanam U, Palamarchuk A, Croce CM et al. CD5+CD23+ leukemic cell populations in TCL1 transgenic mice show significantly increased proliferation and Akt phosphorylation. Leukemia 2010; 24: 970–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bousquet M, Quelen C, Rosati R, Mansat-De Mas V, La Starza R, Bastard C et al. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med 2008; 205: 2499–2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Klusmann JH, Li Z, Bohmer K, Maroz A, Koch ML, Emmrich S et al. miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes Dev 2010; 24: 478–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bousquet M, Harris MH, Zhou B, Lodish HF . MicroRNA miR-125b causes leukemia. Proc Natl Acad Sci USA 2010; 107: 21558–21563.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Saito M, Gao J, Basso K, Kitagawa Y, Smith PM, Bhagat G et al. A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma. Cancer Cell 2007; 12: 280–292.

    Article  CAS  PubMed  Google Scholar 

  50. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 2005; 102: 3627–3632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 2005; 207: 243–249.

    Article  CAS  PubMed  Google Scholar 

  52. Wang M, Tan LP, Dijkstra MK, van Lom K, Robertus JL, Harms G et al. miRNA analysis in B-cell chronic lymphocytic leukaemia: proliferation centres characterized by low miR-150 and high BIC/miR-155 expression. J Pathol 2008; 215: 13–20.

    Article  CAS  PubMed  Google Scholar 

  53. Yamanaka Y, Tagawa H, Takahashi N, Watanabe A, Guo YM, Iwamoto K et al. Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia. Blood 2009; 114: 3265–3275.

    Article  CAS  PubMed  Google Scholar 

  54. O’Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 2008; 205: 585–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 2006; 103: 7024–7029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Medina PP, Nolde M, Slack FJ . OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 2010; 467: 86–90.

    Article  CAS  PubMed  Google Scholar 

  57. Schotte D, Lange-Turenhout EA, Stumpel DJ, Stam RW, Buijs-Gladdines JG, Meijerink JP et al. Expression of miR-196b is not exclusively MLL-driven but is especially linked to activation of HOXA genes in pediatric acute lymphoblastic leukemia. Haematologica 2010; 95: 1675–1682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pieters R, Carroll WL . Biology and treatment of acute lymphoblastic leukemia. Pediatr Clin North Am 2008; 55: 1–20, ix.

    Article  PubMed  Google Scholar 

  59. Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ et al. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 2009; 113: 3314–3322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Coskun E, von der Heide EK, Schlee C, Kuhnl A, Gokbuget N, Hoelzer D et al. The role of microRNA-196a and microRNA-196b as ERG regulators in acute myeloid leukemia and acute T-lymphoblastic leukemia. Leuk Res 2011; 35: 208–213.

    Article  CAS  PubMed  Google Scholar 

  61. Wong P, Iwasaki M, Somervaille TC, Ficara F, Carico C, Arnold C et al. The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res 2010; 70: 3833–3842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129: 1401–1414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang H, Luo XQ, Zhang P, Huang LB, Zheng YS, Wu J et al. MicroRNA patterns associated with clinical prognostic parameters and CNS relapse prediction in pediatric acute leukemia. PLoS One 2009; 4: e7826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang H, Yang JH, Zheng YS, Zhang P, Chen X, Wu J et al. Genome-wide analysis of small RNA and novel MicroRNA discovery in human acute lymphoblastic leukemia based on extensive sequencing approach. PLoS One 2009; 4: e6849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435: 839–843.

    Article  CAS  PubMed  Google Scholar 

  67. Bueno MJ, Perez de Castro I, Gomez de Cedron M, Santos J, Calin GA, Cigudosa JC et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 2008; 13: 496–506.

    Article  CAS  PubMed  Google Scholar 

  68. Kotani A, Ha D, Hsieh J, Rao PK, Schotte D, den Boer ML et al. miR-128b is a potent glucocorticoid sensitizer in MLL-AF4 acute lymphocytic leukemia cells and exerts cooperative effects with miR-221. Blood 2009; 114: 4169–4178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kotani A, Ha D, Schotte D, den Boer ML, Armstrong SA, Lodish HF . A novel mutation in the miR-128b gene reduces miRNA processing and leads to glucocorticoid resistance of MLL-AF4 acute lymphocytic leukemia cells. Cell Cycle 2010; 9: 1037–1042.

    Article  CAS  PubMed  Google Scholar 

  70. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP . A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465: 1033–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Debernardi S, Skoulakis S, Molloy G, Chaplin T, Dixon-McIver A, Young BD . MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 2007; 21: 912–916.

    Article  CAS  PubMed  Google Scholar 

  72. Stumpel DJ, Schneider P, van Roon EH, Boer JM, de Lorenzo P, Valsecchi MG et al. Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 2009; 114: 5490–5498.

    Article  CAS  PubMed  Google Scholar 

  73. Krivtsov AV, Armstrong SA . MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007; 7: 823–833.

    Article  CAS  PubMed  Google Scholar 

  74. Egger G, Liang G, Aparicio A, Jones PA . Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429: 457–463.

    Article  CAS  PubMed  Google Scholar 

  75. Li X, Liu J, Zhou R, Huang S, Huang S, Chen XM . Gene silencing of MIR22 in acute lymphoblastic leukaemia involves histone modifications independent of promoter DNA methylation. Br J Haematol 2010; 148: 69–79.

    Article  CAS  PubMed  Google Scholar 

  76. Agirre X, Vilas-Zornoza A, Jimenez-Velasco A, Martin-Subero JI, Cordeu L, Garate L et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res 2009; 69: 4443–4453.

    Article  CAS  PubMed  Google Scholar 

  77. Roman-Gomez J, Agirre X, Jimenez-Velasco A, Arqueros V, Vilas-Zornoza A, Rodriguez-Otero P et al. Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol 2009; 27: 1316–1322.

    Article  CAS  PubMed  Google Scholar 

  78. Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009; 113: 6411–6418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stumpel DJ, Schotte D, Lange-Turenhout EA, Schneider P, Seslija L, de Menezes RX et al. Hypermethylation of specific microRNA genes in MLL-rearranged infant acute lymphoblastic leukemia: major matters at a micro scale. Leukemia 2011; 25: 429–439.

    Article  CAS  PubMed  Google Scholar 

  80. Chen J, Odenike O, Rowley JD . Leukaemogenesis: more than mutant genes. Nat Rev Cancer 2010; 10: 23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C et al. DNA methylation mediated by a microRNA pathway. Mol Cell 2010; 38: 465–475.

    Article  CAS  PubMed  Google Scholar 

  82. Ting AH, Suzuki H, Cope L, Schuebel KE, Lee BH, Toyota M et al. A requirement for DICER to maintain full promoter CpG island hypermethylation in human cancer cells. Cancer Res 2008; 68: 2570–2575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stam RW, Schneider P, Hagelstein JA, van der Linden MH, Stumpel DJ, de Menezes RX et al. Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants. Blood 2010; 115: 2835–2844.

    Article  CAS  PubMed  Google Scholar 

  84. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    Article  CAS  PubMed  Google Scholar 

  85. Thiel AT, Blessington P, Zou T, Feather D, Wu X, Yan J et al. MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 2010; 17: 148–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bursen A, Schwabe K, Ruster B, Henschler R, Ruthardt M, Dingermann T et al. The AF4.MLL fusion protein is capable of inducing ALL in mice without requirement of MLL.AF4. Blood 2010; 115: 3570–3579.

    Article  CAS  PubMed  Google Scholar 

  87. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005; 438: 685–689.

    Article  CAS  PubMed  Google Scholar 

  88. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008; 452: 896–899.

    Article  CAS  PubMed  Google Scholar 

  89. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010; 327: 198–201.

    Article  CAS  PubMed  Google Scholar 

  90. Vasilatou D, Papageorgiou S, Pappa V, Papageorgiou E, Dervenoulas J . The role of microRNAs in normal and malignant hematopoiesis. Eur J Haematol 2009; 84: 1–16.

    Article  CAS  PubMed  Google Scholar 

  91. Wang Z . The principles of miRNA-masking antisense oligonucleotides technology. Methods Mol Biol 2010; 676: 43–49.

    Article  CAS  Google Scholar 

  92. Ebert MS, Sharp PA . MicroRNA sponges: progress and possibilities. RNA 2010; 16: 2043–2050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ebert MS, Neilson JR, Sharp PA . MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007; 4: 721–726.

    Article  CAS  PubMed  Google Scholar 

  94. Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 2009; 10: 1252–1259.

    Article  CAS  PubMed  Google Scholar 

  95. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137: 1005–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Petrocca F, Lieberman J . Promise and challenge of RNA interference-based therapy for cancer. J Clin Oncol 2011; 29: 747–754.

    Article  CAS  PubMed  Google Scholar 

  97. Bader AG, Brown D, Winkler M . The promise of microRNA replacement therapy. Cancer Res 2010; 70: 7027–7030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mian YA, Zeleznik-Le NJ . MicroRNAs in leukemias: emerging diagnostic tools and therapeutic targets. Curr Drug Targets 2010; 11: 801–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by The Netherlands Organization for Scientific Research (NWO-Vidi Grant; MLdB), the Quality of Life Foundation (MLdB/RP) and the Pediatric Oncology Foundation Rotterdam, KOCR (MLdB/RP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M L Den Boer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schotte, D., Pieters, R. & Den Boer, M. MicroRNAs in acute leukemia: from biological players to clinical contributors. Leukemia 26, 1–12 (2012). https://doi.org/10.1038/leu.2011.151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.151

Keywords

This article is cited by

Search

Quick links